• Title/Summary/Keyword: lactic acid-producing bacteria

Search Result 228, Processing Time 0.026 seconds

Combined Effects of Mugwort Herb and Vitamin C on Shelf-Life of Vacuum-Packed Seasoned Pork

  • Hwang, Ko-Eun;Choi, Yun-Sang;Kim, Hyun-Wook;Choi, Min-Sung;Song, Dong-Heon;Kim, Yong-Jae;Ham, Youn-Kyung;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.35 no.4
    • /
    • pp.421-430
    • /
    • 2015
  • This study was performed to investigate the possibility of the addition of mugwort herb extract (MH) and vitamin C (VC) alone (0.05%) and in combination (0.05% each) on shelf-life of seasoned pork. The combination of VC+MH demonstrated a significant reduction in thiobarbituric acid reactive substances, and volatile basic nitrogen in seasoned pork. Also, the pH values, total lactic acid concentration, lactic acid bacteria count, and the sensory properties (discoloration, flavor, and overall acceptability) of seasoned pork were not significantly affected by adding MH and/or VC. All seasoned pork were rejected by sensory panel when LAB count reached levels of 5-6 Log CFU/g, TLA concentration has been above a level of 3.6-3.9 mg lactic acid/g, and pH values ranged from 5.31-5.51 (15 d). Therefore, the findings showed that spoilage of seasoned pork does not appear to be the result of lipid oxidation, but is caused by lactic acid producing bacteria which result in sour odor.

Identification and Characterization of Bacteriocin-Producing Lactic Acid Bacteria Isolated from Kimchi

  • Lee, Hun-Joo;Park, Chan-Sun;Joo, Yun-Jung;Kim, Seung-Ho;Yoon, Jung-Hoon;Park, Yong-Ha;Hwang, In-Kyeong;Ahn, Jong-Seog;Mheen, Tae-Ick
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.282-291
    • /
    • 1999
  • Lactic acid bacteria were isolated from Kimchi and screened for bacteriocin. A total of 99 strains showed antimicrobial activity when grown on solid media, yet only 10 showed antimicrobial activity in liquid media. Strain H-559, identified as Lactococcus lactis subsp. lactis, exhibited the strongest inhibitory activity and was active against pathogenic bacteria including Listeria monocytogenes, Staphylococcus aureus, and Bacillus cereus as well as other lactic acid bacteria. The antimicrobial substance produced by L. lactis subsp. lactis H-559 was confirmed to be a bacteriocin by the treatment of $\alpha$-chymotrypsin, and protease type Ⅸ and ⅩIV. The bacteriocin activity remained stable between pH 2.0 and pH 11.0 and during heating for 10 min at $100^{\circ}C$. The bacteriocin production started in the exponential phase and stopped in the stationary phase. L. lactis subsp. lactis H-559 showed the highest bacteriocin activity at a culture temperature of $25^{\circ}C$, and an inverse relationship between the bacteriocin productivity and mean growth rate at different culture temperatures was observed. The mean growth rate and bacteriocin productivity of L. lactis subsp. lactis H-559 increased as the initial pH of the media increased.

  • PDF

Isolation and Characterization of Lactic Acid Bacteria Producing Antimutagenic Substance from Korean Kimchi (김치로부터 항돌연변이 물질을 생산하는 유산균의 분리 및 특성)

  • Rhee, Chang-Ho;Park, Heui-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.1
    • /
    • pp.15-22
    • /
    • 1999
  • Various lactic acid bacteria were isolated from Korean Kimchi in order to study their antimutagenic substances. Ames test using Salmonella typhimurium TA98 and TA100 showed the strain KLAB21 to have the highest antimutagenic activity among the 230 isolated strains against MNNG (N-methyl-N'-nitro-N-nitrosoguanidine), NPD (4-nitro-O-phenylenediamine), NQO (4-nitrosoquinoline-1-oxide) and AFB1 (aflatoxin B1). The strain was identified as Lactobacillus plantarum based on its morphological, cultural and physiological characteristics. Antimutagenic activity of L. plantarum KLAB21 was found in culture supernatant suggesting the bacterium secrete antimutagenic substance in the media. No mutagenic activity was found in the culture supernatant. The isolated strain L. plantarum KLAB21 showed much higher antimutagenic activity than L. plantarum IAM1261 which is being used industrially for fermented milk production. The antimutagenic activity of L.plantarum KLAB21 was reconfirmed by the spore-rec assay using spores of Bacillus subtilis H17($Rec^+$) and M45($Rec^-$).

  • PDF

S-Adenosyl-L-methionine (SAM) Production by Lactic Acid Bacteria Strains Isolated from Different Fermented Kimchi Products

  • Lee, Myung-Ki;Lee, Jong-Kyung;Son, Jeong-A;Kang, Mun-Hui;Koo, Kyung-Hyung;Suh, Joo-Won
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.857-860
    • /
    • 2008
  • S-Adenosyl-L-methionine (SAM) is a bioactive material used in the treatment of depression, osteoarthritis, and liver disease. To obtain lactic acid bacteria (LAB) producing high concentrations of SAM, LAB were isolated from commercial kimchi and from prepared kimchi products that contained shrimp jeotgal (fermented salty seafood) or sand lance jeotgal or that were fermented at 5 or $10^{\circ}C$, respectively, when pH was 4.2 to 4.8 and titratable acidity 0.6 to 0.9. Among the 179 LAB strains isolated from the fermented kimchi products, the genus Leuconostoc produced the highest intracellular level of SAM (1.58 mM) and Lactobacillus produced the second highest level (up to 1.47 mM) in the strain culture. This is the first study to quantify SAM in LAB isolated from fermented kimchi prepared by a general kimchi recipe. Ultimately, the selected strains (Leuconostoc mesentroides subsp. mesenteroides/dextranicum KSK417, L. mesentroides subsp. mesenteroides/dextranicum KJM401, and Lactobacillus bifermentans QMW327) could be useful as starters to manufacture fermented foods containing high levels of SAM.

Isolation and Identification of Streptococcus salivarius subsp. thermophilus from Raw Milk (원유로부터 Streptococcus salivarius subsp. thermophilus의 분리 및 동정)

  • 서인영;이정준;신명수;김용재;나석환;백영진
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.1
    • /
    • pp.13-17
    • /
    • 1994
  • We estabilished the procedure for isolation of Streptococcus salivarius subsp. thermophilus from raw milk. First, urease-producing lactic acid bacteria in raw milk were screened on the HY agar medium containing urea. Thereafter the urease-producing colonies were tested the ability to ferment maltose and to grow at43$\circ $C. We obtained about 400 maltose-negative colonies that grew at 43$\circ $C. No significant difference in carbohydrate fermentation test for isolated and type strains(S. salivarius subsp. thermophilus ATCC 19258 and ST-4) was found. And all of the isolated strains were able to ferment galactose. Furthermore, it was investigated that the cellular fatty acid profiles of isolated strains were similar to that of type strains. These results indicated that the isolated strains from raw milk were S. salivarius subsp. thermophilus. But when the isolated and type strains were incubated in 12% reconstituted skim milk at 43$\circ $C, the isolates produced lactic acid more slowly than the type strains.

  • PDF

Isolation and Characterization of Lactobacillus buchneri Strains with High ${\gamma}$-Aminobutyric Acid Producing Capacity from Naturally Aged Cheese

  • Park, Ki-Bum;Oh, Suk-Heung
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.86-90
    • /
    • 2006
  • Two lactic acid bacteria (LAB) with high ${\gamma}$-aminobutyric acid (GABA)-producing capacity were isolated from naturally aged cheese. Examination of the biochemical features using an API kit indicated that the two strains belonged to Lactobacillus. They were gram positive, rod-type bacteria, and fermented arabinose, melezitose, melibiose and xylose, but did not utilize cellobiose or trehalose. 16S rDNA sequencing analysis confirmed that they were Lactobacillus buchneri and Lactobacillus sp. They were accordingly named as Lactobacillus buchneri OPM-1 and Lactobacillus sp. OPM-2, and could produce GABA from MRS broth supplemented with 10 g/L of monosodium glutamate (MSG) at a productivity of 91.7 and 116.7 mg/L/hr, respectively. Cell extracts of L. buchneri OPM-1 and Lactobacillus sp. OPM-2 showed glutamate decarboxylase (GAD) activity, for which the optimum pH and temperature were 5.5 and $30^{\circ}C$, respectively.

Production and Characterization of GABA Rice Yogurt

  • Park, Ki-Bum;Oh, Suk-Heung
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.518-522
    • /
    • 2005
  • Yogurt containing high ${\gamma}$-aminobutyric acid (GABA) was developed using lactic acid bacteria and germinated brown rice. Lactobacillus acidophilus, L. plantarum, and L. brevis OPY-1 strains were inoculated into Lactobacillus MRS broth for use as yogurt starter. After treatment with 5% monosodium glutamate in MRS broth, L. brevis OPY-1 strain isolated from Kimchi produced GABA concentration of 8,003.28 nmol/mL. Starter was inoculated into fermentation substrate mixture containing germinated brown rice extract and blend of powdered whole milk and skim milk. Samples were incubated, and viable cell colonies were counted. Highest number of lactic acid bacteria was reached between 16 and 20 hr. Concentrated rice milk fermented with high GABA-producing strain contained GABA concentrations of $137.17\;{\mu}g/g$ D.W., whereas concentrated fermented milk prepared by conventional method contained GABA of $1.29\;{\mu}g/g$ D.W. Sensory evaluation panelists gave favorable ratings to fermented rice milk containing high GABA concentration.

Identification of Antifungal Substances of Lactobacillus sakei subsp. ALI033 and Antifungal Activity against Penicillium brevicompactum Strain FI02

  • Huh, Chang Ki;Hwang, Tae Yean
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.1
    • /
    • pp.52-56
    • /
    • 2016
  • This study was performed to investigate the antifungal substances and the antifungal activity against fungi of lactic acid bacteria (LAB) isolated from kimchi. LAB from kimchi in Imsil showed antifungal activity against Penicillium brevicompactum strain FI02. LAB LI031 was identified as Lactobacillus sakei subsp. Antifungal substances contained in L. sakei subsp. ALI033 culture media were unstable at high pH levels. Both, the control and proteinase K and protease treated samples showed clear zones, suggesting that the antifungal substances produced by ALI033 were non-protein substances unaffected by protesases. Both, the control and catalase showed clear zones, suggesting that the antifungal metabolite was not $H_2O_2$. The molecular weights of the antifungal substances were ${\leq}3,000Da$. The organic acid content of crude antifungal substances produced by L. sakei subsp. ALI033 showed high concentrations of lactic acid (502.47 mg/100 g). Therefore, these results suggest that antifungal substance produced by L. sakei subsp. ALI033 is most likely due to its ability in producing organic acid.

Probiotic Characteristics of Lactobacillus acidophilus KY1909 Isolated from Korean Breast-Fed Infant (한국인 유아 분변에서 분리한 Lactobacillus acidophilus KY1909의 프로바이오틱 특성)

  • Park, Jong-Gil;Yun, Suk-Young;Oh, Se-Jong;Shin, Jung-Gul;Baek, Young-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1244-1247
    • /
    • 2003
  • The purpose of this study was to isolate lactic acid bacteria that produced L(+) lactic acid from infant feces. Thirteen colonies were isolated with a MRS-plate containing 0.5% $CaCO_3$ to determine their ability to produce lactic acid. Based on their lactic acid production, 10 strains of Lactobacillus were identified to assess the ratio of lactate isomer using HPLC. A strain producing L-lactic acid was identified as Lactobacillus acidophilus, using API carbohydrate fermentation patterns and physiological tests, and named KY1909. The strain exhibited good acid tolerance in an artificial gastric juice as well as high bile resistance in MRS containing 0.5% bile acids. L. acidophilus KY1909 produced D(-) and L(+) lactic acid at a ratio of 6 : 94; whereas commercial strains of Lactobacillus acidophilus produced D(-) and L(+) lactic acid at a ratio of 1 : 1. These results demonstrate the L. acidophilus KY1909 can be utilized in fermented milk products and dietary supplements as a probiotic culture.

HOW TO DEVELOPE NEW PRO BIOTIC WITH ANTI Helicohacter pylori FUNCTION

  • Lee Yeonhee
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2001.12a
    • /
    • pp.161-169
    • /
    • 2001
  • Lactic acid producing bacteria were isolated from baby feces and characterized to be used as a probiotic with anti Helicobacter pylori functions. The selected bacteria had inhibition activity on the adherance and growth of H. pylori. These bacteria had additional beneficial characteristics for the probiotic such as antibacterial activity, antitumor activity, immunostimulation activity, resistance to antibiotic and bile salt, ability to bind to the intestinal cells, and safe for the human use.

  • PDF