• 제목/요약/키워드: lactic acid cultures

Search Result 167, Processing Time 0.023 seconds

Fermentation Aspects of Fruit-Vegetable Juice by Mixed Cultures of Lactic Acid Bacteria Isolated from Kimchi and Yeast (김치 젖산균과 효모의 혼합배양 방법에 의한 과채류즙의 발효양상)

  • 최홍식;김현영;여경목;김복남
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.6
    • /
    • pp.1059-1064
    • /
    • 1998
  • Fermented beverage using lactic acid bacteria isolated from kimchi was investigated. Lactic acid bacteria KL 1, KD 6, KL 4 strains from kimchi, or obtained Lactobacillus acidophilus, Lactobacillus plantarum, Leuconostoc mesenteroides with and without yeast(Saccharomyces cerevisiae) were inoculated in fruit vegetable juice for single and mixed culture fermentation. During the fermentation by bacterial strain and yeast for 1~3 days at 30oC, various fermentation behaviors were observed. The growth rate of mixed culture of KL 1 and yeast was higher than that of single culture by KL 1 alone during the fermentation. The amount of organic acid produced by the mixed culture fermentation of KL 1 and yeast was 0.82%(3 day) or 0.58%(1 day) and with the final pH of 3.3(3 day) or 4.2(1 day). These mixed culture systems of isolated strains or other bacterial strains had almost similar results of growth rate and acid production. Among several bacterial strains, KL 1 was suitable for the mixed culture fermentation with yeast in terms of desirable fermentation behavior and organoleptical quality. The selected strain, KL 1 was identified as Leuconostoc spp. through the series of tests on carbohydrate fermentation and biochemical characteristics.

  • PDF

Storage characteristics of frozen soy yogurt Prepared with different proteolytic enzymes and starter cultures (단백분해효소와 Starter Culture의 종류에 따른 frozen soy yogurt의 저장성)

  • Lee Sook-Young;Lee Jung-Eun
    • Korean journal of food and cookery science
    • /
    • v.21 no.2 s.86
    • /
    • pp.217-224
    • /
    • 2005
  • The storage characteristics of frozen soy yogurt prepared with hydrolyzed soy protein isolates were evaluated. In order to facilitate lactic fermentation bacteria grow and produce lactic acid as fast rate as possible, soy protein isolate(SPI) was hydrolyzed using two kinds of proteases; bromelain and a-chymotrypsin. The cultural systems employed thereafter for lactic fermentations were Bifidobacterium bifidum or B. bifidum and Lactobacillus bulgaricus. The viable cell counts, normal- and bile acid tolerances from the mixed cultures of B. bifidum and L. bulgaricus decreased sharply during the initial first 3 days of frozen storage and then showed a gradual decrease thereafter. Melt-down percent of the all frozen products have been favorably affected as was shown by less melting at raised testing temperature during 28 days of frozen storage except for the initial 3 days during which a minor change has been observed. Among the various volatile flavor components, the contents of acetaldehyde, acetone, diacetyl and methanol generally increased during the frozen storage. In sensory test, the frozen soy yogurt prepared with a-chymotrypsin and mixed culture of B. bifidum and L. bulgaricus was the most desirable, the highest scores in sourness, bitterness and mouthfeel.

Conversion of Unsaturated Food Fatty Acids into Hydroxy Fatty Acids by Lactic Acid Bacteria

  • Kim, Myung-Hee;Park, Mee-Seung;Chung, Chang-Ho;Kim, Cheong-Tae;Kim, Youn-Soon;Kyung, Kyu-Hang
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.360-365
    • /
    • 2003
  • The ability of 19 lactic acid bacteria to produce hydroxy fatty acids (HFAs) from unsaturated food fatty acids (USFAs) was tested. HFAs are related to human ailments, including steatorrhea. All the cultures produced HFAs from USFAs, unless their growth was inhibited by free USFAs. Lactococcus lactis subsp. lactis KFRI 131 converted oleic, linoleic, and linolenic acid into 10-hydroxyoctadecanoic acid (10-HODA), 10-hydroxyoctadecaenoic acid (10-HODEA), and 10-hydroxyoctadecadienoic acid (10-HODDEA), respectively. Both a USFA and a surfactant were needed for the bacterium to convert the fatty acid into the corresponding HFA. It was apparent that the production of 10-HODA was growth-related, while that of 10-HODDEA was not. It was unclear whether the production of 10-HODEA was growth-related.

Assessment of Applicability of a Calcium Carbonate-Alginate Beads as Neutralizer for the High Cell Density Cultivation of Isolated Sourdough Lactic Acid Bacteria (Sourdough에서 분리된 유산균의 고농도 배양을 위한 중화제로서 Calcium Carbonate-Alginate Bead의 이용가능성 평가)

  • Jung, Seung-Won;Lee, Kwang-Geun;Kim, Cheol Woo;Lee, Su Han
    • Food Engineering Progress
    • /
    • v.14 no.3
    • /
    • pp.208-216
    • /
    • 2010
  • Lab scale experiments were conducted in order to assess the applicability of $CaCO_{3}$-alginate beads as neutralizer for the high cell density cultivation and prepare the direct vat inoculation cultures of isolated sourdough lactic acid bacteria. With increasing the amount of bead and decreasing the diameter of bead in acidic solution, the neutralizing effect of $CaCO_{3}$-alginate bead became higher. In batch process with $CaCO_{3}$-alginate beads, Lactobacillus amylovorus DU-21 isolated from sourdough showed the highest viable cell counts and optical density in MRS broth. The values of viable cell counts and optical density were 9.996 log CFU/mL and 3.97, respectively. Experiments on the conditions which increase viability during lyophilization were carried out and the following results were obtained; 15% glycerol revealed the high cryoprotective effect on the concentrated cultures during lyophilization among the two cryoprotective agents. Consequently, $CaCO_{3}$-alginate beads and 15% glycerol were found to be useful not only to cultivate Lactobacillus amylovorus DU-21 but also to preserve strain.

Lactic Acid Fermentation in Soymilk by Single and Mixed Cultures of Lactobacillus Casei and Kluyveromyces fragilis (Lactobacillus casei IFO 3012 와 Kluyveromyces fragilis KFCC 35458의 혼합배양에 의한 두유의 젖산발효)

  • Yu, Ju-Hyun;Lew, In-Deok;Park, Chung-Kil;Lim, Hong-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.518-525
    • /
    • 1988
  • Lactobacillus casei IFO 3012 and Kluyveromyces fragilis(KFCC 35458) were cultured together in Soymilk to investigate the growth characteristics and the conditions suitable for acid Production. L. casei produced more amount of acid rapidly when cultured with K. fragilis in soymilk than when cultured singly. The optimum conditions for acid production by the mixed cultures of L. casei and K. fragilis were achieved with a temperature of $35-37^{\circ}C$, a 1:5-1:9(O.D 660) ratio of L. casei to K. fragilis at inoculum, a 1.0 level of sucrose fortification or a 2.0% level of skim milk powder fortification and a culture time of 24hr. Under these conditions the amounts of acid produced by the single culture of L. casei and the mixed cultures with K. fragilis were 0.31% and 0.44% in soymilk, 0.43% and 0.97%, respectively, in soymilk fortified with 1.0% level of sucrose. These indicate that the amount of acid produced by mixed cultures is about 1.42 fold greater in soymilk and about 2.26 fold greater in soymilk fortified with 1.0% level of sucrose than that produced by the single culture of L. casei. The amount of acid produced in soymilk fortified with 2.0% level of skim milk powder was 1.0 level for both of the single culture of L. casei and the mixed cultures of L. casei and K. fragilis after 24hr incubation. In soymilk fortified with skim milk power less than 1.5 the mixed culture with K. fragilis showed higher content of acid than the single culture of L. casei only.

  • PDF

Effect of Different Pediococcus pentosaceus and Lactobacillus plantarum Strains on Quality Characteristics of Dry Fermented Sausage after Completion of Ripening Period

  • Seleshe, Semeneh;Kang, Suk Nam
    • Food Science of Animal Resources
    • /
    • v.41 no.4
    • /
    • pp.636-649
    • /
    • 2021
  • The aim of this study was to evaluate the effect of three different strains of lactic acid bacteria (LAB) starter cultures: Pediococcus pentosaceus (KC-13100) (PP), Lactobacillus plantarum (KCTC-21004) (LP1), and L. plantarum (KCTC-13093) (LP2) on the physicochemical and microbiological characteristics, and sensory quality of dry fermented sausages after 21 days of drying and ripening period. Treatments added with PP and LP2 strains showed a significant higher (p<0.05) LAB and total plat counts, and water activity (aw) of all three treatments was below 0.85 after the completion of the ripening process. A significant variation (p<0.05) in pH values of treatments was exhibited due to the difference in acidification capacity of the LAB strains: LP2PP>LP2. Substantial variations (p<0.05) in shear force values were detected amongst three batches (LP2>LP1>PP). In sensory attributes, PP treated samples had significantly higher (p<0.05) color and overall acceptability scores. The current findings proved how important the optimal assortment of starter culture. Inoculation with PP produced importantly beneficial effects on sensory quality improvement of dry fermented sausage.

Screening and Characterization of Lactic Acid Bacteria Strains with Anti-inflammatory Activities through in vitro and Caenorhabditis elegans Model Testing

  • Lee, Hye Kyoung;Choi, Sun-Hae;Lee, Cho Rong;Lee, Sun Hee;Park, Mi Ri;Kim, Younghoon;Lee, Myung-Ki;Kim, Geun-Bae
    • Food Science of Animal Resources
    • /
    • v.35 no.1
    • /
    • pp.91-100
    • /
    • 2015
  • The present study was conducted to screen candidate probiotic strains for anti-inflammatory activity. Initially, a nitric oxide (NO) assay was used to test selected candidate probiotic strains for anti-inflammatory activity in cultures of the murine macrophage cell line, RAW 264.7. Then, the in vitro probiotic properties of the strains, including bile tolerance, acid resistance, and growth in skim milk media, were investigated. We also performed an in vitro hydrophobicity test and an intestinal adhesion assay using Caenorhabditis elegans as a surrogate in vivo model. From our screening, we obtained 4 probiotic candidate lactic acid bacteria (LAB) strains based on their anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cell cultures and the results of the in vitro and in vivo probiotic property assessments. Molecular characterization using 16S rDNA sequencing analysis identified the 4 LAB strains as Lactobacillus plantarum. The selected L. plantarum strains (CAU1054, CAU1055, CAU1064, and CAU1106) were found to possess desirable in vitro and in vivo probiotic properties, and these strains are good candidates for further investigations in animal models and human clinical studies to elucidate the mechanisms underlying their anti-inflammatory activities.

A Study on Effect of Acanthopanax sessiliflorum Seeman Water Extract on the Growth of Lactic Acid Bacteria (오갈피(Acanthopanax sessiliflorum Seeman) 추출액이 유산균의 생육에 미치는 영향)

  • Kim Sun-Young;Park Keun-Sil;Lee Su-Han;Jung Seung-Won;Noh Wan-Seob
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.16 no.3
    • /
    • pp.357-363
    • /
    • 2006
  • This study examined the effect of medicinal herbs on the growth of 3 strains of lactic starter cultures in a MRS broth by adding a 0, 1, 3, 5, and 10% water extract. The pH, titratable acidity and OD of lactic acid bacteria were investigated in order to obtain fundamental knowledge for the development a new product, box thorn yogurt. In the case of adding the Acanthopanax sessiliflorum Seeman water extract, Streptococcus thermophilus was largely activated by the addition of the 5% extract. The growth of Lactobacillus acidophilus was activated by the extracts but it was depressed by the addition of the 3% Acanthopanax sessiliflorum Seeman water extract. Compared with the control, the growth of Bifidobacterium longum was largely activated by the addition of the 10% extract but it was depressed by the addition of the 5% Acanthopanax sessiliflorum Seeman water extract.

  • PDF

Heme Derived from Corynebacterium glutamicum: A Potential Iron Additive for Swine and an Electron Carrier Additive for Lactic Acid Bacterial Culture

  • Choi, Su-In;Park, Jihoon;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.500-506
    • /
    • 2017
  • To investigate the potential applications of bacterial heme, aminolevulinic acid synthase (HemA) was expressed in a Corynebacterium glutamicum HA strain that had been adaptively evolved against oxidative stress. The red pigment from the constructed strain was extracted and it exhibited the typical heme absorbance at 408 nm from the spectrum. To investigate the potential of this strain as an iron additive for swine, a prototype feed additive was manufactured in pilot scale by culturing the strain in a 5 ton fermenter followed by spray-drying the biomass with flour as an excipient (biomass: flour = 1:10 (w/w)). The 10% prototype additive along with regular feed was supplied to a pig, resulting in a 1.1 kg greater increase in weight gain with no diarrhea in 3 weeks as compared with that in a control pig that was fed an additive containing only flour. To verify if C. glutamicum-synthesized heme is a potential electron carrier, lactic acid bacteria were cultured under aerobic conditions with the extracted heme. The biomasses of the aerobically grown Lactococcus lactis, Lactobacillus rhamosus, and Lactobacillus casei were 97%, 15%, and 4% greater, respectively, than those under fermentative growth conditions. As a potential preservative, cultures of the four strains of lactic acid bacteria were stored at $4^{\circ}C$ with the extracted heme and living lactic acid bacterial cells were counted. There were more L. lactis and L. plantarum live cells when stored with heme, whereas L. rhamosus and L. casei showed no significant differences in live-cell numbers. The potential uses of the heme from C. glutamicum are further discussed.

Antibacterial Activity against Food-poisoning Causing Bacteria and Characterization of Lactobacillus plantarum YK-9 Isolated from Kimchi (김치에서 분리한 세균인 Lactobacillus plantarum YK-9의 식중독 원인세균에 대한 항균활성 및 특성)

  • Song, You-Jin;Park, Su-Ho;You, Ji-Young;Cho, Yun-Seok;Oh, Kye-Heon
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.273-278
    • /
    • 2009
  • The purpose of this work was to investigate the antibacterial activity of Lactobacillus plantarum YK-9 isolated from fermented Kimchi. Morphological and biochemical characteristics of L. plantarum YK-9 were examined. Phylogenetic analysis using 16S rRNA sequencing was performed to identify the strain, and the strain could be assigned to Lactobacillus plantarum, designated as L. plantarum YK-9. The strain was registered in GenBank as [FJ669130]. During the incubation period of L. plantarum YK-9, the changes of bacterial growth and residual organic acids were monitored. HPLC was used to confirm the organic acids produced in the cultures as metabolites. L. plantarum YK-9 produced both lactic acid and acetic acid, which were responsible for the pH decrease during growth. Initial pH 7.0 of the cultures decreased to 3.6 at the incubation after 72 hours, and concentrations of lactic acid and acetic acid increased to approximately 588.7 mM and 255.5 mM, respectively. The antibacterial activities against food-poisoning causing bacteria were examined with 20-fold concentrated culture supernatants from L. plantarum YK-9, and the antibacterial effects were clearly observed against all the bacteria tested in this work.