Browse > Article
http://dx.doi.org/10.5851/kosfa.2015.35.1.91

Screening and Characterization of Lactic Acid Bacteria Strains with Anti-inflammatory Activities through in vitro and Caenorhabditis elegans Model Testing  

Lee, Hye Kyoung (Department of Animal Science and Technology, Chung-Ang University)
Choi, Sun-Hae (Department of Animal Science and Technology, Chung-Ang University)
Lee, Cho Rong (Department of Animal Science and Technology, Chung-Ang University)
Lee, Sun Hee (Department of Animal Science and Technology, Chung-Ang University)
Park, Mi Ri (BK21 Plus Graduate Program, Department of Animal Science and Institute Agricultural Science & Technology, Chonbuk National University)
Kim, Younghoon (BK21 Plus Graduate Program, Department of Animal Science and Institute Agricultural Science & Technology, Chonbuk National University)
Lee, Myung-Ki (Fermentation and Functionality Research Group, Korea Food Research Institute)
Kim, Geun-Bae (Department of Animal Science and Technology, Chung-Ang University)
Publication Information
Food Science of Animal Resources / v.35, no.1, 2015 , pp. 91-100 More about this Journal
Abstract
The present study was conducted to screen candidate probiotic strains for anti-inflammatory activity. Initially, a nitric oxide (NO) assay was used to test selected candidate probiotic strains for anti-inflammatory activity in cultures of the murine macrophage cell line, RAW 264.7. Then, the in vitro probiotic properties of the strains, including bile tolerance, acid resistance, and growth in skim milk media, were investigated. We also performed an in vitro hydrophobicity test and an intestinal adhesion assay using Caenorhabditis elegans as a surrogate in vivo model. From our screening, we obtained 4 probiotic candidate lactic acid bacteria (LAB) strains based on their anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cell cultures and the results of the in vitro and in vivo probiotic property assessments. Molecular characterization using 16S rDNA sequencing analysis identified the 4 LAB strains as Lactobacillus plantarum. The selected L. plantarum strains (CAU1054, CAU1055, CAU1064, and CAU1106) were found to possess desirable in vitro and in vivo probiotic properties, and these strains are good candidates for further investigations in animal models and human clinical studies to elucidate the mechanisms underlying their anti-inflammatory activities.
Keywords
lactic acid bacteria; probiotics; anti-inflammatory; Caenorhabditis elegans;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Karthikeyan, T., Pravin, M., Muthusamy, V. S., Raja, R. B., and Lakshmi, B. S. (2013) In vitro investigation of the immunomodulatory potential of probiotic Lactobacillus casei. Probiotics Antimicro. Prot. 5, 51-58.   DOI
2 Kim, Y. and Mylonakis, E. (2012) Caenorhabditis elegans immune conditioning with the probiotic bacterium Lactobacillus acidophilus strain NCFM enhances gram-positive immune responses. Infect. Immun. 80, 2500-2508.   DOI
3 Korhonen, R., Korpela, R., and Moilanen, E. (2002) Signalling mechanisms involved in the induction of inducible nitric oxide synthase by Lactobacillus rhamnosus GG, endotoxin, and lipoteichoic acid. Inflammation 26, 207-214.   DOI   ScienceOn
4 Lee, E. K., Lee, N. K., Lee, S. K., Chang, H. I., and Paik, H. D. (2010) Screening of immunostimulatory probiotic lactic acid bacteria from chicken feces as animal probiotics. Korean J. Food Sci. An. 30, 634-640.   DOI   ScienceOn
5 Choi, J. K., Lim, Y. S., Kim, H. J., Hong, Y. H., Ryu, B. Y., and Kim, G. B. (2012) Screening and characterization of Lactobacillus casei MCL strain exhibiting immunomodulation activity. Korean J. Food Sci. An. 32, 635-643.   DOI   ScienceOn
6 Chon, H., Choi, B., Lee, E., and Jeong, G. (2009) Immunomodulatory effects of specific bacterial component of Lactobacillus plantarum KFCC11389P on the murine macrophage cell line RAW 264.7. J. Appl. Microbiol. 107, 1588-1597.   DOI   ScienceOn
7 Duary, R. K., Rajput, Y. S., Batish, V. K., and Grover, S. (2011) Assessing the adhesion of putative indigenous probiotic lactobacilli to human colonic epithelial cells. Indian J. Med. Res. 134, 664-671.   DOI
8 Feighery, L. M., Smith, P., O’Mahony, L., Fallon, P. G., and Brayden, D. J. (2008) Effects of Lactobacillus salivarius 433118 on intestinal inflammation, immunity status and in vitro colon function in two mouse models of inflammatory bowel disease. Dig. Dis. Sci. 53, 2495-1506.   DOI
9 Food and Agriculture Organization of the United Nations. (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. (http://www.who.int/foodsafety/publications/fs_management/en/probiotics/pdf)
10 Gilliland, S. E. and Walker, D. K. (1990) Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in human. J. Dairy Sci.73, 905-911.   DOI
11 Green, L. C., Wagner, D. A., Glogowski, J., Skipper, J., Wishnok, J. S., and Tannenbaum, S. R. (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal. Biochem. 126, 131-138.   DOI   ScienceOn
12 Hedin, C., Whelani, K., and Lindsay, J. O. (2000) Evidence for the use of probiotics and probiotics in inflammatory bowel diseases: a review of clinical trials. Proc. Nutr. Sor. 66, 307-315.
13 Alander, M., De Smet I., Nollet, L., Verstraete, W., von Wright, A., and Mattila-Sandholm, T. (1999) The effect of probiotic strains on the microbiota of the simulator of the human intestinal microbial ecosystem (SHIME). Int. J. Food. Microbiol. 46, 71-79.   DOI   ScienceOn
14 Argyri, A. A., Zoumpopoulou, G., Karatzas, K. A. G., Tsakalidou, E., Nychas, G. J. E., Panagou, E. Z., and Tassou, C. C. (2013) Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol. 33, 282-291.   DOI   ScienceOn
15 Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
16 Valeriano, V. D., Parungao-Balolong, M. M., and Kang, D. K. (2014) In vitro evaluation of the mucin-adhesion ability and probiotic potential of Lactobacillus mucosae LM1. J. Appl. Microbiol. 117, 485-497.   DOI   ScienceOn
17 Van Tassell, M. L. and Miller, M. J. (2011) Lactobacillus adhesion to mucus. Nutrients 3, 613-636.   DOI
18 Park, M. R., Yun, H. S., Son, S. J., Oh, S., and Kim, Y. (2014) Development of a direct in vivo screening model to identify potential probiotic bacteria using Caenorhabditis elegans. J. Dairy Sci. 97, 6828-6834.   DOI   ScienceOn
19 Perez, P. F., Minnaard, Y., Disalvo, E. A., and Antoni, G. L. (1998) Surface properties of bifidobacterial strains of human origin. Appl. Environ. Microb. 64, 21-26.
20 Ouwehand, A. C. and Salminen, S. (2003) In vitro adhesion assays for probiotics and their in vivo relevance: a review. Microb. Ecol. Health Dis. 15, 175-184.   DOI   ScienceOn
21 Lorsbach, R. B., Murphy, W. J., Lowenstein, C. J., Snyder, S. H., and Russell, S. W. (1993) Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing: molecular basis for the synergy between interferongamma and lipopolysaccharide. J. Biol. Chem. 268, 1908-1913.
22 Lee, H. S., Han, S. Y., Bae, E. A., Huh, C. S., Ahn, Y. T., Lee, J. H., and Kim, D. H. (2008) Lactic acid bacteria inhibit proinflammatory cytokine expression and bacterial glycosaminoglycan degradation activity in dextran sulfate sodium-induced colitic mice. Int. Immunopharmacol. 8, 574-580.   DOI   ScienceOn
23 Lee, S. K., Yang, K. M., Cheon, J. H., Kim, T. I., and Kim, W. H. (2012) Anti-inflammatory mechanism of Lactobacillus rhamnosus GG in lipopolysaccharide-stimulated HT-29 cell. Korean J. Gastroenterol. 60, 86-93.   DOI
24 McGhee, J. D. (2007) The C. elegans intestine. WormBook 27, 1-36.
25 Leung, M. C. K., Williams, P. L., Benedetto, A., Au, C., Helmcke, K. J., Aschner, M., and Meyer, J. N. (2008) Caenorhabditis elegans: An emerging model in biomedical and environmental toxicology. Toxicol. Sci. 106, 5-28.   DOI   ScienceOn
26 Maldonado, G. C., Doreno, D., de LeBlanc, A., Vinderola, G., Bibas, B., Perdigo’nG, M. E. (2007) Proposed model: Mechanisms of immunomodulation induced by probiotic bacteria. Clin. Vaccine Immunol. 14, 485-492.   DOI   ScienceOn
27 Mcdonald, L. C., Fleming, H. P., and Hassan, H. M. (1990) Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Appl. Environ. Microbiol. 56, 2120-2124.
28 Mishra, V. and Prasad, D. N. (2005) Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int. J. Food Microbiol. 103, 109-115.   DOI   ScienceOn
29 Kim, D. W., Cho, S. B., Yun, C. H., Jeong, H. Y., Chung, W. T., Choi, C. W., Lee, H. J., Nam I. S., Suh, H. H., Lee, S. S., and Lee, B. S. (2007) Induction of cytokines and nitric oxide in murine macrophages stimulated with enzymatically digested Lactobacillus strains. J. Microbiol. 45, 373-378.
30 Hyronimus, B., Le Marrec, C., HadjSassi, A., and Deschamps, A. (2000) Acid and bile tolerance of spore-forming lactic acid bacteria. Int. J. Food Microbiol. 61, 193-197.   DOI   ScienceOn
31 Jeong, I. Y., Lee, H. J., Jin, C. H., Park, Y. D., Choi, D. S., and Kang, M. A. (2010) Anti-inflammatory activity of Stevia rebaudiana in LPS-induced RAW 264.7 cells. J. Food Sci. Nutr. 15, 14-18.   DOI   ScienceOn
32 Carasi, P., Ambrosis, N. M., De Antoni, G. L., Bressollier, P., Urdaci, M. C., and Serradell Mde, L. (2014) Adhesion properties of potentially probiotic Lactobacillus kefiri to gastrointestinal mucus. J. Dairy Res. 81, 16-23.   DOI   ScienceOn
33 Byrd, J. C. and Bresalier, R. S. (2004) Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev. 23, 77-99.   DOI   ScienceOn