• Title/Summary/Keyword: lactic acid bacteria (LAB)

Search Result 519, Processing Time 0.03 seconds

Rapid in vivo Colonization Screening of Probiotic Bacteria Isolated from Human Infants using Caenorhabditis elegans Surrogate Host (Caenorhabditis elegans 생체대체모델을 이용한 한국 영유아분변 유래 프로바이오틱스 균주의 in vivo 장 우점능 검토)

  • Park, Miri;Jeong, Eun-Seon;Oh, Sangnam;Song, Min-Ho;Doo, Jae-Kyun;Jeong, Yong-Seob;Moon, Yong-Il;Kim, Younghoon
    • Food Science of Animal Resources
    • /
    • v.33 no.4
    • /
    • pp.522-530
    • /
    • 2013
  • The ability of probiotics to adhere to the intestinal epithelium likely plays an important role in their colonization of the gastrointestinal tract. Here, we performed high-throughput screening (HTS) for suitable characteristics of potential probiotic bacteria using attachment and colonization ability through a C. elegans surrogate in vivo model. A total of 100 strains of lactic acid bacteria (LAB) isolated from infant feces were subjected to the colonization assay using C. elegans intestine. Based on colonization ability, we showed that nine isolates have a high attachment ability during whole experimental periods (up to 168 h), compared to Lactobacillus rhamnosus strain GG as a control. Also, through the use of an in vitro cell attachment model, nine isolates revealed highly binding activity to the mucus layer. Next, the selected 9 isolates were assayed for their survival ability when exposed to acidic and bile conditions as well as cholesterol reduction and the utilization of prebiotic substrates. As a result, the isolated nine strains were determined to be highly resistant to acid and bile conditions. In addition, they have significant activity for the reduction of cholesterol and utilization of several prebiotic substrates as a carbon source. Finally, the selected nine strains were identified by either L. rhamnosus or L. plantarum (4 strains for L. rhamnosus and 5 strains for L. plantarum, respectively). Taken together, we propose that the direct colonization of probiotics using C. elegans may be applicable to the rapid screening of valuable probiotic strains in vivo.

Investigation on the Microbiological and Biochemical Properties of Kimchi in the Solid-state Model System Designed for Fermented Sausages

  • Lee, Joo-Yeon
    • Food Science of Animal Resources
    • /
    • v.30 no.2
    • /
    • pp.236-242
    • /
    • 2010
  • The objective of this study was to investigate the potential of the application of kimchi LAB as starter culture in the production of fermented sausages. For this, the solid-state model media composed to simulate the substantial conditions of meat mixtures were fermented for 120 h after the treatment with different concentrations of kimchi (0.5, 1.0, 1.5, 3.0, and 5.0%) and lyophilized kimchi-powder (0.2 % and 0.5%). During the fermentation period, the growth of total viable cells and LAB, and the changes of pH and titratable acidity were investigated. The initial LAB counts ranged from 7.18 to 8.34 Log CFU/ mL for kimchi media and from 6.93 to 6.94 Log CFU/mL for kimchi-powder media depending on the added concentrations. The kimchi LAB in this study were not influenced by the immobilized condition for their adaptation and growth by showing no lag phase and thus acted similar as in the submerged medium. The initially increased counts reached around 9 Log CFU/ mL in 12 h independent of the concentrations of a ded kimchi. However, the growth and metabolic activity of kimchi-powder LAB were influenced by the immobilized condition. Supposedly, as the nutrient supply in solid-state depended solely on diffusion, these differences in the souring properties were caused by the LAB topography in the medium matrix. Nevertheless, the differences in the numbers of LAB between two media were less than 0.5 Log units and the pH drop in the solidstate batches was quite rapid and reached low values. Therefore, it can be assumed that kimchi and kimchi-powder LAB showed the utility as the substitute of commercial starter culture even without a rehydrating pretreatment.

Fermentation Properties and Increased Health Functionality of Kimchi by Kimchi Lactic Acid Bacteria Starters (김치 유산균 Starter를 이용한 김치의 발효 특성 및 기능성 증진 효과)

  • Bong, Yeon-Ju;Jeong, Ji-Kang;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.11
    • /
    • pp.1717-1726
    • /
    • 2013
  • Fermentation characteristics and health functionalities of kimchi by inoculating kimchi lactic acid bacteria (LAB) starters were studied. We manufactured single LAB starter kimchi (Lactobacillus plantarum pnuK, Lactobacillus plantarum 3099K, Leuconostoc mesenteroides pnuK), mixed LAB starter kimchi (Lb. plantarum pnu/Leu. mesenteroides pnuK, Lb. plantarum 3099/Leu. mesenteroides pnuK) with inoculum size of $10^6$ CFU/g, as well as naturally fermented kimchi (NK), and fermented them for 6 days at $15^{\circ}C$. The pH and acidity of the early phase of fermentation were not different, but kimchi with the starters showed rapid changes in the pH and acidity from 2 days of fermentation. As the fermentation progressed, the level of total aerobic bacteria and Lactobacillus sp. increased similarly with or without Lb. plantarum (LP) inoculation. However, the level of Leuconostoc sp. was high in kimchi inoculated with Leuconostoc sp. starter. In the sensory evaluation test, kimchi with starters received higher overall acceptability scores than those of NK; mixed starter added kimchi earned the highest score. In DPPH and hydroxyl radical scavenging activity, kimchi with the starters exhibited higher activity than that of NK. In the MTT assay of HCT-116 and HT-29 human colon cancer cells, NK showed inhibition rates of 63.4 and 51.9%, but LPpnuK achieved 77.1 and 68.8%, respectively. This study showed that inoculating starters in kimchi increased in vitro antioxidant and anticancer activities, and single starter (LP) added kimchi revealed higher functionality than the kimchi with mixed starter. Kimchis with the starters effectively up-regulated the gene expressions of the pro-apoptotic gene of Bax, but down-regulated Bcl-2. They promoted expressions of p53 and p21, and suppressed expressions of inflammation-related genes, iNOS and COX-2, compared with NK. Taken together, it is expected that using starters may help manufacture kimchi with improved sensory quality and health functionality.

Antifungal Effect of Phenyllactic Acid Produced by Lactobacillus casei Isolated from Button Mushroom

  • Yoo, Jeoung Ah;Lee, Chan-Jung;Kim, Yong-Gyun;Lee, Byung-Eui;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.14 no.4
    • /
    • pp.162-167
    • /
    • 2016
  • Lactic acid bacteria (LAB) producing phenyllactic acid (PLA), which is known as antimicrobial compound, was isolated from button mushroom bed and the isolated LAB was identified to Lactobacillus casei by 16 rRNA gene sequence analysis. Cell-free supernatant (CFS) from L. casei was assessed for both the capability to produce the antimicrobial compound PLA and the antifungal activity against three fungal pathogens (Rhizoctonia solani, Botrytis cinerea, and Collectotricum aculatum). PLA concentration was investigated to be 3.23 mM in CFS when L. casei was grown in MRS broth containing 5 mM phenylpyruvic acid as precursor for 16 h. Antifungal activity demonstrated that all fungal pathogens were sensitive to 5% CFS (v/v) of L. casei with average growth inhibitions ranging from 34.58% to 65.15% (p < 0.005), in which R. solani was the most sensitive to 65.15% and followed by C. aculatum, and B. cinerea. The minimum inhibitory concentration (MIC) for commercial PLA was also investigated to show the same trend in the range of 0.35 mg mL-1 (2.11 mM) to 0.7 mg mL-1 (4.21 mM) at pH 4.0. The inhibition ability of CFS against the pathogens were not affected by the heating or protease treatment. However, pH modification in CFS to 6.5 resulted in an extreme reduction in their antifungal activity. These results may indicate that antifungal activities in CFS was caused by acidic compounds like PLA or organic acids rather than protein or peptide molecules.

Effect of Selected Inoculant Applications on Chemical Compositions and Fermentation Characteristics of High Moisture Rye Silage

  • Lee, Seong Shin;Jeong, Seung Min;Seo, Myeong Ji;Joo, Young Ho;Paradhipta, Dimas Hand Vidya;Seong, Pil Nam;Kim, Sam Churl
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.3
    • /
    • pp.155-161
    • /
    • 2022
  • The aim of this study was to investigate the effect of isolated lactic acid bacteria (LAB) on the quality of high moisture rye silage. Rye forage (Secale cereale L.) was harvested at the heading stage (27.3% of dry matter (DM)) and cut into approximately 3-5 cm lengths. Then, the forage divided into 4 treatments with different inoculants: 1) No additives (CON); 2) Lactobacillus brevis strain 100D8 at a 1.2 × 105 colony-forming unit (cfu)/g of fresh forage (LBR); 3) Leuconostoc holzapfelii strain 5H4 at a 1.0 × 105 cfu/g of fresh forage (LHO); and 4) Mixture of LBR and LHO (1:1 ratio) applied at a 1.0 × 105 cfu/g of fresh forage (MIX). About 3 kg of forage from each treatment was ensiled into a 20 L mini-bucket silo in quadruplicate for 100 days. After silo opening, silage was collected for analyses of chemical compositions, in vitro nutrient digestibilities, fermentation characteristics, and microbial enumerations. The CON silage had the highest concentrations of neutral detergent fiber and acid detergent fiber (p = 0.006; p = 0.008) and a lowest in vitro DM digestibility (p < 0.001). The pH was highest in CON silage, while lowest in LBR and MIX silages (p < 0.001). The concentrations of ammonia-N, lactate, and acetate were highest in LBR silage (p = 0.008; p < 0.001; p < 0.001). Propionate and butyrate concentrations were highest in CON silage (p = 0.004; p < 0.001). The LAB and yeast counts were higher in CON and LHO silages compare to LBR and MIX silages (p < 0.001). However, the mold did not detect in all treatments. Therefore, this study could conclude that L. brevis 100D8 and Leu. holzapfelii strain 5H4 can improve the digestibility and anti-fungal activity of high moisture rye silage.

Present Status of Fermented Milk Products in Japan

  • Hosono, Akiyoshi
    • 한국유가공학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.21-39
    • /
    • 2004
  • Fermented milks have been recognized as healthy foods since ancient times, but those using intestinal bacteria such as Bifidobacterium and lactic acid bacteria (LAB) are even more valuable from the standpoint of view of maintaining health. They have also now come to be recognized as important in the field of preventive medicine. Although advances in the medical sciences in the last 50 years have significantly increased the human lift span, an unfortunate fact is that many of us are now living long enough to experience chronic disorders such as coronary heart disease, hypertension, osteoporosis, diabetes and cancer. In recent years there has been renewed interest in health promotion and disease prevention by incorporating probiotic bacteria into foods to counteract harmful bacteria in the intestinal tract. Therefore, there are now a wide variety of commercial products containing prospective probiotics that claim health-promoting effects, such reductions in large botvel carcinogens and mutagens, antitumor properties, cholesterol-lowering effects, increased lactose digestion, relief from con-stipation, stimulation of immunocomponent cells and enhancement of phagocytosis. Two well-known representative probiotic is LAB and Bifidobaclerium. Traditional probiotic dairy strains of LAB which have been designated as GRAS (Generally Recognized As Safe) bacteria have a long history of safe use and most strains are considered comestible microorganisms with no pathogenic potential. Accordingly, there is considerable interest in extending the range of foods containing probiotic organisms from dairy foods to infant formulas, baby foods, and pharmaceuticals. In addition, the ingestion of probiotics, prebiotics, and symbiotic as wll as combinations of pro- and prebiotics has recently aroused renewed interest as enhancing the beneficial relationship between the host and intestinal microflora in both healthy and diseased indivisuals. Non-communicable chronic diseases such as cancer, cerebral hemorrhage, is chemic heart disease, and diabetes mellitus has recently been recognized as adult diseases in Japan as well as other countries. and are considered to be inevitably associated with aging. These diseases occur as a result of individual life styles. The Japanes Government. Ministry of Health, Labor and Welfare has proposed substituting the term 'adult diseases' with 'lifestyle-related diseases'. It has emphasized the importance of prevention rather than treatment. since the well-known increase in the elderly population in Japan is predicted to result in a variety of socioeconomic problems. n this lecture on the Present status of fermented milk products in Japan, I will report a strategy for the development of fermented milk products in Japan from the standpoint of view of research in Japan on LAB and Bifidobacteria. They could play an important role in preserving human health by controlling intestinal microflora capable of producing toxic effects on the host.

  • PDF

Changes in microbial population and chemical composition of corn stover during field exposure and effects on silage fermentation and in vitro digestibility

  • Sun, Lin;Wang, Zhijun;Gentu, Ge;Jia, Yushan;Hou, Meiling;Cai, Yimin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.6
    • /
    • pp.815-825
    • /
    • 2019
  • Objective: To effectively use corn stover resources as animal feed, the changes in microbial population and chemical composition of corn stover during field exposure, and their silage fermentation and in vitro digestibility were studied. Methods: Corn cultivars (Jintian, Jinnuo, and Xianyu) stovers from 4 random sections of the field were harvested at the preliminary dough stage of maturity on September 2, 2015. The corn stover exposed in the field for 0, 7, 15, 30, 60, 90, and 180 d, and their silages at 60 d of ensiling were used for the analysis of microbial population, chemical composition, fermentation quality, and in vitro digestibility. Data were analyzed with a completely randomized $3{\times}6$ [corn stover cultivar $(C){\times}exposure$ d (D)] factorial treatment design. Analysis of variance was performed using SAS ver. 9.0 software (SAS Institute Inc., Cary, NC, USA). Results: Aerobic bacteria were dominant population in fresh corn stover. After ensiling, the lactic acid bacteria (LAB) became the dominant bacteria, while other microbes decreased or dropped below the detection level. The crude protein (CP) and water-soluble carbohydrate (WSC) for fresh stover were 6.74% to 9.51% and 11.75% to 13.21% on a dry matter basis, respectively. After exposure, the CP and WSC contents decreased greatly. Fresh stover had a relatively low dry matter while high WSC content and LAB counts, producing silage of good quality, but the dry stover did not. Silage fermentation inhibited nutrient loss and improved the fermentation quality and in vitro digestibility. Conclusion: The results confirm that fresh corn stover has good ensiling characteristics and that it can produce silage of good quality.

Microbiota and Physicochemical Analysis on Traditional Kocho Fermentation Enhancer to Reduce Losses (Gammaa) in the Highlands of Ethiopia

  • Dibaba, Adane Hailu;Tuffa, Ashenafi Chaka;Gebremedhin, Endrias Zewdu;Nugus, Gerbaba Guta;Gebresenbet, Girma
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.3
    • /
    • pp.210-224
    • /
    • 2018
  • Warqe (Ensete ventricosum) has been traditionally fermented in an earthen pit to yield a carbohydrate-rich food product named kocho, for generations. A fermentation enhancer (gammaa) was added to this fermenting mass to enhance the fermentation process. The objectives of this study were to assess the physicochemical properties and microbiota of the kocho fermentation enhancer culture to reduce losses. Cross-sectional study design was implemented to collect 131 gammaa samples on the first day of fermentation. The samples were further classified into four groups according to the duration of fermentation (14, 21, 30, and 60 days) practised in various households traditionally. The results showed that the fermentation time significantly affected the physicochemical properties and microbial load of gammaa (p < 0.01). As the fermentation progressed from day 1 to 60, the pH decreased and the titratable acidity increased. The total coliform, Enterobacteriaceae, aerobicmesophilic bacteria (AMB), yeast, and mould counts were significantly reduced at the end of fermentation. In contrast, the number of lactic acid bacteria (LAB) increased significantly until day 30 of fermentation, because of the ability of the LAB to grow at low pH. Lactobacillus species from LAB isolates and Enter obacteriaceae from AMB isolates were the most abundant microorganisms in gammaa fermentation. However, the Enterobacteriaceae and Lactobacilli species count showed decreasing and increasing trends, respectively, as the fermentation progressed. These isolates must be investigated further to identify the species and strain, so as to develop gammaa at the commercial scale.

Production of the Bacteriocin from the Tofu-Residue (두부비지를 이용한 박테리오신 생산)

  • 이명숙;이원재;김동수;박지현;강지희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.1
    • /
    • pp.74-80
    • /
    • 1999
  • Growth and bacteriocin production by Lactobacillus sp. GM7311 in tofu residue treated with two commercial amylases were investigated. The optimal condition of amylase Ⅰ(liquefied enzyme for sauce) and Ⅱ(multienzyme 2,000) for the enzyme reaction was showed at pH 6.0 and 4.0, respectively. The optimal temperature was 40oC both. At the enzyme dosage 4% and 3% and reaction time 1hr, about 2% of reduced sugar needed bacteriocin production was obtained. The enzymatic treatment of tofu residue enhanced bacteriocin production by lactic acid bacteria, particularly in the tofu residues added 2.0% yeast extract. But, we couldn't see the increment of bacteriocin activity in the tofu residues added other nitrogen sources such as proteose peptone No. 3 and lab lemco powder. Also, in the comparision of amylase I and Ⅱ, bacteriocin activity in the tofu residue treated with amylase Ⅰ was better than that of amylase Ⅱ.

  • PDF

Isolation and Characterization of Lactic acid bacteria Leuconostoc mesenteroides DB3 from Camellia japonica Flower (백꽃으로부터 분리한 Leuconostoc mesenteroides DB3의 특성)

  • Sam Woong Kim;Da Hye Shin;Sang Wan Gal;Kyu Ho Bang;Da Som Kim;Won-Jae Chi
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.915-922
    • /
    • 2023
  • Lactic acid bacteria (LAB) are widespread in a variety of environments including fermented dairy products, gastroinstetinal and urogenital tracts of human and animals, plant, soil and water. Leuconostoc mesenteroides DB3 was detected by the strongest antibacterial activities among 24 Leuconostoc strains isolated from Camellia japonica flowers. Acid tolerance of L. mesenteroides DB3 existed up to pH 2.5, but the resistance did not show at pH 2.0, which relatively excellent acid resistance existed. Bile acid tolerance was very stable within the test range to 1.2%. L. mesenteroides DB3 exhibited the optimal growth at 30℃, and showed a slight slow growth when compared with L. mesenteroides KCTC3505, which reached a stationary phase at 18 hr. The pH was changed along with the growth curve, but was maintained above pH 3.98. L. mesenteroides DB3 had higher initial antibacterial activities when compared to L. mesenteroides KCTC3505, but it showed similar activities with the standard strain after the latter part of the logarithmic growth phase. Although lactic acid production in L. mesenteroides DB3 was induced by lower amount in the initial part to the standard strain, it was exhibited by similar amounts after the late logarithmic growth phase. Muicin adhesion of L. mesenteroides DB-3 maintained superior to L. mesenteroides KCTC3505. Both strains showed excellent emulsification ability for kerosene. In summary, we evaluate that L. mesenteroides DB-3 has a high potential for application as probiotics owing to its excellent antibacterial activity, acid resistance, bile acid resistance, and muicin adhesion.