Browse > Article
http://dx.doi.org/10.5851/kosfa.2013.33.4.522

Rapid in vivo Colonization Screening of Probiotic Bacteria Isolated from Human Infants using Caenorhabditis elegans Surrogate Host  

Park, Miri (Department of Animal Science, Chonbuk National University)
Jeong, Eun-Seon (Department of Food Science and Technology, Chonbuk National University)
Oh, Sangnam (Department of Animal Science, Chonbuk National University)
Song, Min-Ho (Department of Animal Science and Biotechnology, Chungnam National University)
Doo, Jae-Kyun (Sophia Women's Hospital)
Jeong, Yong-Seob (Department of Food Science and Technology, Chonbuk National University)
Moon, Yong-Il (Department of Animal Source Foods, Woosuk University)
Kim, Younghoon (Department of Animal Science, Chonbuk National University)
Publication Information
Food Science of Animal Resources / v.33, no.4, 2013 , pp. 522-530 More about this Journal
Abstract
The ability of probiotics to adhere to the intestinal epithelium likely plays an important role in their colonization of the gastrointestinal tract. Here, we performed high-throughput screening (HTS) for suitable characteristics of potential probiotic bacteria using attachment and colonization ability through a C. elegans surrogate in vivo model. A total of 100 strains of lactic acid bacteria (LAB) isolated from infant feces were subjected to the colonization assay using C. elegans intestine. Based on colonization ability, we showed that nine isolates have a high attachment ability during whole experimental periods (up to 168 h), compared to Lactobacillus rhamnosus strain GG as a control. Also, through the use of an in vitro cell attachment model, nine isolates revealed highly binding activity to the mucus layer. Next, the selected 9 isolates were assayed for their survival ability when exposed to acidic and bile conditions as well as cholesterol reduction and the utilization of prebiotic substrates. As a result, the isolated nine strains were determined to be highly resistant to acid and bile conditions. In addition, they have significant activity for the reduction of cholesterol and utilization of several prebiotic substrates as a carbon source. Finally, the selected nine strains were identified by either L. rhamnosus or L. plantarum (4 strains for L. rhamnosus and 5 strains for L. plantarum, respectively). Taken together, we propose that the direct colonization of probiotics using C. elegans may be applicable to the rapid screening of valuable probiotic strains in vivo.
Keywords
lactic acid bacteria; probiotics; in vivo colonization; Caenorhabditis elegans;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ann, E. Y., Kim, Y., Oh, S., Imm, J. Y., Park, D. J., Han, K. S., and Kim, S. H. (2007) Microencapsulation of Lactobacillus acidophilus ATCC 43121 with prebiotic substrates using a hybridisation system. Int. J. Food Sci. Tech. 42, 411-419.   DOI   ScienceOn
2 Azcarate-Peril, M. A., Tallon, R., and Klaenhammer, T. R. (2009) Temporal gene expression and probiotic attributes of Lactobacillus acidophilus during growth in milk. J. Dairy Sci. 92, 870-886.   DOI   ScienceOn
3 Biedrzycka, E. and Bielecka, M. (2004) Prebiotic effectiveness of fructans of different degrees of polymerization. Trends Food Sci. Tech. 15, 170-175.   DOI   ScienceOn
4 Boris, S., Suarez, J., and Barbes, C. (1997) Characterization of the aggregation promoting factor from Lactobacillus gasseri, a vaginal isolate. J. Appl. Microbiol. 83, 413-420.   DOI   ScienceOn
5 Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
6 Coconnier, M. H., Klaenhammer, T., Kerneis, S., Bernet, M., and Servin, A. (1992) Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human enterocyte and mucussecreting cell lines in culture. Appl. Environ. Microb. 58, 2034-2039.
7 Dambekodi, P. C. and Gilliland, S. E. (1998) Incorporation of cholesterol into the cellular membrane of Bifidobacterium longum. J. Dairy Sci. 81, 1818-1824.   DOI   ScienceOn
8 Erkkila, S. and Petaja, E. (2000) Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Sci. 55, 297-300.   DOI   ScienceOn
9 Fang, H., Elina, T., Heikki, A., and Seppo, S. (2000) Modulation of humoral immune response through probiotic intake. FEMS Immunol. Med. Mic. 29, 47-52.   DOI   ScienceOn
10 Gilliland, S., Nelson, C., and Maxwell, C. (1985) Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microb. 49, 377-381.
11 Han, K. S., Imm, J. Y., Oh, S. J., Jeon, W. M., and Kim, S. H. (2002) Characterization and purification of bacteriocin produced by Lactobacillus acidophilus ATCC 4356. Food Sci. Biotechnol. 11, 531-536.   과학기술학회마을
12 Irazoqui, J. E., Urbach, J. M., and Ausubel, F. M. (2010) Evolution of host innate defence: Insights from Caenorhabditis elegans and primitive invertebrates. Nat. Rev. Immunol. 10, 47-58.   DOI   ScienceOn
13 Kim, J., Chun, J., and Han, H. U. (2000) Leuconostoc kimchii sp. nov., a new species from kimchi. Int. J. Syst. Evol. Micr. 50, 1915-1919.
14 Kim, Y. and Mylonakis, E. (2012) C. elegans immune conditioning with the probiotic bacterium Lactobacillus acidophilus NCFM enhances Gram-positive immune responses. Infect. Immun. 80, 2600-2508
15 Kim, Y., Whang, J. Y., Whang, K. Y., Oh, S., and Kim, S. H. (2008) Characterization of the cholesterol-reducing activity in a cell-free supernatant of Lactobacillus acidophilus ATCC 43121. Biosci. Biotech. Biochem. 72, 1483-1490.   DOI   ScienceOn
16 Kirjavainen, P. V., Apostolou, E., Arvola, T., Salminen, S. J., Gibson, G. R., and Isolauri, E. (2001) Characterizing the composition of intestinal microflora as a prospective treatment target in infant allergic disease. FEMS Immunol. Med. Mic. 32, 1-7.   DOI   ScienceOn
17 Kleesen, B., Hartmann, L., and Blaut, M. (2001) Oligofructose and long-chain inulin: influence on the gut microbial ecology of rats associated with a human faecal flora. Brit. J. Nutr. 86, 291-300.   DOI   ScienceOn
18 Mitsuoka, T. (1990) Bifidobacteria and their role in human health. J. Ind. Microbiol. 6, 263-267.   DOI   ScienceOn
19 Lee, S., Yang, E., Kwon, H., Kang, J., and Kang, B. (2008) Potential probiotic properties of Lactobacillus johnsonii IDCC 9203 isolated from infant feces. Korean J. Microbiol. Biotechnol. 36, 121-127.   과학기술학회마을
20 Matsumura, A., Saito, T., Arakuni, M., Kitazawa, H., Kawai, Y., and Itoh, T. (1999) New binding assay and preparative trial of cell-surface lectin from Lactobacillus acidophilus group lactic acid bacteria. J. Dairy Sci. 82, 2525-2529.   DOI   ScienceOn
21 Oh, S., Kim, S. H., and Worobo, R. W. (2000) Characterization and purification of a bacteriocin produced by a potential probiotic culture, Lactobacillus acidophilus 30SC. J. Dairy Sci. 83, 2747-2752.   DOI   ScienceOn
22 Ouwehand, A. C., Tuomola, E. M., Tolkko, S., and Salminen, S. (2001) Assessment of adhesion properties of novel probiotic strains to human intestinal mucus. Int. J. Food Microbiol. 64, 119-126.   DOI   ScienceOn
23 Paik, H. D. (2004) Identification and probiotic properties of Lactococcus lactis NK24 isolated from Jeot-gal, a Korean fermented food. Food Sci. Biotechnol. 13, 411-416.
24 Powell, J. and Ausubel, F. (2008) Models of Caenorhabditis elegans infection by bacterial and fungal pathogens. In: Innate Immunity. Ewbank, J. and Vivier, E. (eds) Humana Press, pp. 403-427.
25 Razin, S., Kutner, S., Efrati, H., and Rottem, S. (1980) Phospholipid and cholesterol uptake by mycoplasma cells and membranes. BBA-Biomembranes 598, 628-640.   DOI   ScienceOn
26 Reid, G. and Burton, J. (2002) Use of Lactobacillus to prevent infection by pathogenic bacteria. Microbes Infect. 4, 319-324.   DOI   ScienceOn
27 Rudel, L. and Morris, M. (1973) Determination of cholesterol using o-phthalaldehyde. J. Lipid Res. 14, 364-366.
28 Reid, G., McGroarty, J. A., Angotti, R., and Cook, R. L. (1988) Lactobacillus inhibitor production against Escherichia coli and coaggregation ability with uropathogens. Can. J. Microbiol. 34, 344-351.   DOI   ScienceOn
29 Riddle, D. L., Meyer, B. J., and Priess, J. R. (eds) (1997) C. elegans II. Cold Spring Harbor Laboratory Press. Cold Spring Harbor.
30 Roberfroid, M. (2007) Prebiotics: The concept revisited. J. Nutr. 137, 830S-837S.
31 Saarela, M., Mogensen, G., Fonden, R., Matto, J., and Mattila-Sandholm, T. (2000) Probiotic bacteria: Safety, functional and technological properties. J. Biotechnol. 84, 197-215.   DOI   ScienceOn
32 Salminen, S., Bouley, C., Boutron-Ruault, M., Cummings, J., Franck, A., Gibson, G., Isolauri, E., Moreau, M., Roberfroid, M., and Rowland, I. (1998) Functional food science and gastrointestinal physiology and function. Brit. J. Nutr. 80, S147.   DOI   ScienceOn
33 Saulnier, D. M. A., Spinler, J. K., Gibson, G. R., and Versalovic, J. (2009) Mechanisms of probiosis and prebiosis: Considerations for enhanced functional foods. Curr. Opin. Biotech. 20, 135-141.   DOI   ScienceOn
34 Sridevi, N., Vishwe, P., and Prabhune, A. (2009) Hypocholesteremic effect of bile salt hydrolase from Lactobacillus buchneri ATCC 4005. Food Res. Int. 42, 516-520.   DOI   ScienceOn