• Title/Summary/Keyword: laboratory model

Search Result 5,735, Processing Time 0.033 seconds

The Far-infrared Drying Characteristics of Steamed Sweet Potato (증자 호박고구마의 원적외선 건조특성)

  • Lee, Dong Il;Lee, Jung Hyun;Cho, Byeong Hyo;Lee, Hee Sook;Han, Chung Su
    • Food Engineering Progress
    • /
    • v.21 no.1
    • /
    • pp.42-48
    • /
    • 2017
  • The purpose of this study was to verify the drying characteristics of steamed sweet potato and to establish optimal drying conditions for far-infrared drying of steamed sweet potato. 4 kg of steamed sweet potato was sliced to thicknesses of 8 and 10 mm, and dried by a far-infrared dryer until a final moisture content of $25{\pm}0.5%$. The far-infrared dryer conditions were an air velocity of 0.6, 0.8 m/s and drying temperature of 60, 70, and $80^{\circ}C$. The results can be summarized as follows. The drying time tended to be reduced as temperature and air velocity for drying increased. The Lewis and Modified Wang and Singh models were found to be suitable for drying of steamed sweet potato by a far-infrared dryer. The color difference was 35.09 on the following conditions: Thickness of 8 mm, temperature of $80^{\circ}C$, and air velocity of 0.8 m/s. The highest sugar content ($59.11^{\circ}Brix$) was observed on the conditions of a thickness of 8 mm, temperature of 80, and air velocity of 0.8 m/s. Energy consumption decreased on the conditions of higher temperature, slower air velocity, and thinner steamed sweet potato.

Status and Implications of Hydrogeochemical Characterization of Deep Groundwater for Deep Geological Disposal of High-Level Radioactive Wastes in Developed Countries (고준위 방사성 폐기물 지질처분을 위한 해외 선진국의 심부 지하수 환경 연구동향 분석 및 시사점 도출)

  • Jaehoon Choi;Soonyoung Yu;SunJu Park;Junghoon Park;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.737-760
    • /
    • 2022
  • For the geological disposal of high-level radioactive wastes (HLW), an understanding of deep subsurface environment is essential through geological, hydrogeological, geochemical, and geotechnical investigations. Although South Korea plans the geological disposal of HLW, only a few studies have been conducted for characterizing the geochemistry of deep subsurface environment. To guide the hydrogeochemical research for selecting suitable repository sites, this study overviewed the status and trends in hydrogeochemical characterization of deep groundwater for the deep geological disposal of HLW in developed countries. As a result of examining the selection process of geological disposal sites in 8 countries including USA, Canada, Finland, Sweden, France, Japan, Germany, and Switzerland, the following geochemical parameters were needed for the geochemical characterization of deep subsurface environment: major and minor elements and isotopes (e.g., 34S and 18O of SO42-, 13C and 14C of DIC, 2H and 18O of water) of both groundwater and pore water (in aquitard), fracture-filling minerals, organic materials, colloids, and oxidation-reduction indicators (e.g., Eh, Fe2+/Fe3+, H2S/SO42-, NH4+/NO3-). A suitable repository was selected based on the integrated interpretation of these geochemical data from deep subsurface. In South Korea, hydrochemical types and evolutionary patterns of deep groundwater were identified using artificial neural networks (e.g., Self-Organizing Map), and the impact of shallow groundwater mixing was evaluated based on multivariate statistics (e.g., M3 modeling). The relationship between fracture-filling minerals and groundwater chemistry also has been investigated through a reaction-path modeling. However, these previous studies in South Korea had been conducted without some important geochemical data including isotopes, oxidationreduction indicators and DOC, mainly due to the lack of available data. Therefore, a detailed geochemical investigation is required over the country to collect these hydrochemical data to select a geological disposal site based on scientific evidence.

One-Dimensional Consolidation Simulation of Kaolinte using Geotechnical Online Testing Method (온라인 실험을 이용한 카올리나이트 점토의 일차원 압밀 시뮬레이션)

  • Kwon, Youngcheul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.247-254
    • /
    • 2006
  • Online testing method is one of the numerical experiment methods using experimental information for a numerical analysis directly. The method has an advantage in that analysis can be conducted without using an idealized mechanical model, because mechanical properties are updated from element test for a numerical analysis in real time. The online testing method has mainly been used for the geotechnical seismic engineering, whose major target is sand. A testing method that may be applied to a consolidation problem has recently been developed and laboratory and field verifications have been tried. Although related research thus far has mainly used a method to update average reaction for a numerical analysis by positioning an element tests at the center of a consolidation layer, a weakness that accuracy of the analysis can be impaired as the thickness of the consolidation layer becomes more thicker has been pointed out regarding the method. To clarify the effectiveness and possible analysis scope of the online testing method in relation to the consolidation problem, we need to review the results by applying experiment conditions that may completely exclude such a factor. This research reviewed the results of the online consolidation test in terms of reproduction of the consolidation settlement and the dissipation of excess pore water pressure of a clay specimen by comparing the results of an online consolidation test and a separated-type consolidation test carried out under the same conditions. As a result, the online consolidation test reproduced the change of compressibility according effective stress of clay without a huge contradiction. In terms of the dissipation rate of excess pore water pressure, however, the online consolidation test was a little faster. In conclusion, experiment procedure needs to improve in a direction that hydraulic conductivity can be updated in real time so as to more precisely predict the dissipation of excess pore water pressure. Further research or improvement should be carried out with regard to the consolidation settlement after the end of the dissipation of excess pore water pressure.

Exploring the Role of Preference Heterogeneity and Causal Attribution in Online Ratings Dynamics

  • Chu, Wujin;Roh, Minjung
    • Asia Marketing Journal
    • /
    • v.15 no.4
    • /
    • pp.61-101
    • /
    • 2014
  • This study investigates when and how disagreements in online customer ratings prompt more favorable product evaluations. Among the three metrics of volume, valence, and variance that feature in the research on online customer ratings, volume and valence have exhibited consistently positive patterns in their effects on product sales or evaluations (e.g., Dellarocas, Zhang, and Awad 2007; Liu 2006). Ratings variance, or the degree of disagreement among reviewers, however, has shown rather mixed results, with some studies reporting positive effects on product sales (e.g., Clement, Proppe, and Rott 2007) while others finding negative effects on product evaluations (e.g., Zhu and Zhang 2010). This study aims to resolve these contradictory findings by introducing preference heterogeneity as a possible moderator and causal attribution as a mediator to account for the moderating effect. The main proposition of this study is that when preference heterogeneity is perceived as high, a disagreement in ratings is attributed more to reviewers' different preferences than to unreliable product quality, which in turn prompts better quality evaluations of a product. Because disagreements mostly result from differences in reviewers' tastes or the low reliability of a product's quality (Mizerski 1982; Sen and Lerman 2007), a greater level of attribution to reviewer tastes can mitigate the negative effect of disagreement on product evaluations. Specifically, if consumers infer that reviewers' heterogeneous preferences result in subjectively different experiences and thereby highly diverse ratings, they would not disregard the overall quality of a product. However, if consumers infer that reviewers' preferences are quite homogeneous and thus the low reliability of the product quality contributes to such disagreements, they would discount the overall product quality. Therefore, consumers would respond more favorably to disagreements in ratings when preference heterogeneity is perceived as high rather than low. This study furthermore extends this prediction to the various levels of average ratings. The heuristicsystematic processing model so far indicates that the engagement in effortful systematic processing occurs only when sufficient motivation is present (Hann et al. 2007; Maheswaran and Chaiken 1991; Martin and Davies 1998). One of the key factors affecting this motivation is the aspiration level of the decision maker. Only under conditions that meet or exceed his aspiration level does he tend to engage in systematic processing (Patzelt and Shepherd 2008; Stephanous and Sage 1987). Therefore, systematic causal attribution processing regarding ratings variance is likely more activated when the average rating is high enough to meet the aspiration level than when it is too low to meet it. Considering that the interaction between ratings variance and preference heterogeneity occurs through the mediation of causal attribution, this greater activation of causal attribution in high versus low average ratings would lead to more pronounced interaction between ratings variance and preference heterogeneity in high versus low average ratings. Overall, this study proposes that the interaction between ratings variance and preference heterogeneity is more pronounced when the average rating is high as compared to when it is low. Two laboratory studies lend support to these predictions. Study 1 reveals that participants exposed to a high-preference heterogeneity book title (i.e., a novel) attributed disagreement in ratings more to reviewers' tastes, and thereby more favorably evaluated books with such ratings, compared to those exposed to a low-preference heterogeneity title (i.e., an English listening practice book). Study 2 then extended these findings to the various levels of average ratings and found that this greater preference for disagreement options under high preference heterogeneity is more pronounced when the average rating is high compared to when it is low. This study makes an important theoretical contribution to the online customer ratings literature by showing that preference heterogeneity serves as a key moderator of the effect of ratings variance on product evaluations and that causal attribution acts as a mediator of this moderation effect. A more comprehensive picture of the interplay among ratings variance, preference heterogeneity, and average ratings is also provided by revealing that the interaction between ratings variance and preference heterogeneity varies as a function of the average rating. In addition, this work provides some significant managerial implications for marketers in terms of how they manage word of mouth. Because a lack of consensus creates some uncertainty and anxiety over the given information, consumers experience a psychological burden regarding their choice of a product when ratings show disagreement. The results of this study offer a way to address this problem. By explicitly clarifying that there are many more differences in tastes among reviewers than expected, marketers can allow consumers to speculate that differing tastes of reviewers rather than an uncertain or poor product quality contribute to such conflicts in ratings. Thus, when fierce disagreements are observed in the WOM arena, marketers are advised to communicate to consumers that diverse, rather than uniform, tastes govern reviews and evaluations of products.

  • PDF

A STUDY ON THE IONOSPHERE AND THERMOSPHERE INTERACTION BASED ON NCAR-TIEGCM: DEPENDENCE OF THE INTERPLANETARY MAGNETIC FIELD (IMF) ON THE MOMENTUM FORCING IN THE HIGH-LATITUDE LOWER THERMOSPHERE (NCAR-TIEGCM을 이용한 이온권과 열권의 상호작용 연구: 행성간 자기장(IMF)에 따른 고위도 하부 열권의 운동량 강제에 대한 연구)

  • Kwak, Young-Sil;Richmond, Arthur D.;Ahn, Byung-Ho;Won, Young-In
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.2
    • /
    • pp.147-174
    • /
    • 2005
  • To understand the physical processes that control the high-latitude lower thermospheric dynamics, we quantify the forces that are mainly responsible for maintaining the high-latitude lower thermospheric wind system with the aid of the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM). Momentum forcing is statistically analyzed in magnetic coordinates, and its behavior with respect to the magnitude and orientation of the interplanetary magnetic field (IMF) is further examined. By subtracting the values with zero IMF from those with non-zero IMF, we obtained the difference winds and forces in the high-latitude 1ower thermosphere(<180 km). They show a simple structure over the polar cap and auroral regions for positive($B_y$ > 0.8|$\overline{B}_z$ |) or negative($B_y$ < -0.8|$\overline{B}_z$|) IMF-$\overline{B}_y$ conditions, with maximum values appearing around -80$^{\circ}$ magnetic latitude. Difference winds and difference forces for negative and positive $\overline{B}_y$ have an opposite sign and similar strength each other. For positive($B_z$ > 0.3125|$\overline{B}_y$|) or negative($B_z$ < -0.3125|$\overline{B}_y$|) IMF-$\overline{B}_z$ conditions the difference winds and difference forces are noted to subauroral latitudes. Difference winds and difference forces for negative $\overline{B}_z$ have an opposite sign to positive $\overline{B}_z$ condition. Those for negative $\overline{B}_z$ are stronger than those for positive indicating that negative $\overline{B}_z$ has a stronger effect on the winds and momentum forces than does positive $\overline{B}_z$ At higher altitudes(>125 km) the primary forces that determine the variations of tile neutral winds are the pressure gradient, Coriolis and rotational Pedersen ion drag forces; however, at various locations and times significant contributions can be made by the horizontal advection force. On the other hand, at lower altitudes(108-125 km) the pressure gradient, Coriolis and non-rotational Hall ion drag forces determine the variations of the neutral winds. At lower altitudes(<108 km) it tends to generate a geostrophic motion with the balance between the pressure gradient and Coriolis forces. The northward component of IMF By-dependent average momentum forces act more significantly on the neutral motion except for the ion drag. At lower altitudes(108-425 km) for negative IMF-$\overline{B}_y$ condition the ion drag force tends to generate a warm clockwise circulation with downward vertical motion associated with the adiabatic compress heating in the polar cap region. For positive IMF-$\overline{B}_y$ condition it tends to generate a cold anticlockwise circulation with upward vertical motion associated with the adiabatic expansion cooling in the polar cap region. For negative IMF-$\overline{B}_z$ the ion drag force tends to generate a cold anticlockwise circulation with upward vertical motion in the dawn sector. For positive IMF-$\overline{B}_z$ it tends to generate a warm clockwise circulation with downward vertical motion in the dawn sector.