DOI QR코드

DOI QR Code

The Characteristics and Seasonal Variations of OC and EC for PM2.5 in Seoul Metropolitan Area in 2014

서울지역의 PM2.5 중 OC와 EC의 특성 및 계절적 변화에 관한 연구

  • Park, Jong Sung (Climate and Air Quality Research Department, National Institute of Environmental Research) ;
  • Song, In Ho (Climate and Air Quality Research Department, National Institute of Environmental Research) ;
  • Park, Seung Myung (Climate and Air Quality Research Department, National Institute of Environmental Research) ;
  • Shin, Hyejung (Climate and Air Quality Research Department, National Institute of Environmental Research) ;
  • Hong, Youdeog (Climate and Air Quality Research Department, National Institute of Environmental Research)
  • 박종성 (국립환경과학원 대기환경연구과) ;
  • 송인호 (국립환경과학원 대기환경연구과) ;
  • 박승명 (국립환경과학원 대기환경연구과) ;
  • 신혜정 (국립환경과학원 대기환경연구과) ;
  • 홍유덕 (국립환경과학원 대기환경연구과)
  • Received : 2015.11.02
  • Accepted : 2015.12.09
  • Published : 2015.12.31

Abstract

To investigate characteristics and seasonal variations of carbonaceous species for $PM_{2.5}$ in Seoul metropolitan area, Korea, we measured organic carbon (OC) and elemental carbon (EC) from January 2014 to December 2014 using a semi-continuous OC/EC Analyzer (Model-4, Sunset Lab.). Mean concentrations of OC and EC were estimated $4.1{\pm}2.7{\mu}g/m^3$ and $1.6{\pm}1.0{\mu}g/m^3$, respectively. The annual averaged OC/EC ratio was $2.9{\pm}2.7$. Concentrations of OC and EC comprised 13% and 5% of $PM_{2.5}$ and the mass fraction of both was the highest in fall. OC and EC showed similar trend in seasonal variations. Concentrations of those showed a clear seasonal variation with the highest in winter and the lowest in summer. The correlations between the two were the best during the winter ($r^2=0.88$). As results of carbonaceous species analysis, the dominant factor in view of fine particle ($PM_{2.5}$) is primary emission source such as mobile, fossil fuel combustion during commute time(08:00~10:00 or 17:00~21:00) and winter season. Continuous monitoring of atmospheric carbonaceous species is essential to provide the science-based data to policy-maker establishing the air quality improvement policy.

본 연구는 수도권 지역 OC와 EC의 지역적, 계절적 특성을 파악하기 위하여 서울 은평구 불광동에 위치한 수도권 대기오염집중측정소에서 2014년 1월부터 12월까지 1년간 Semi-Continuous OC/EC Analyzer (Sunset Laboratory INC., USA)를 사용하여 $PM_{2.5}$ 중 OC와 EC를 측정하였다. 그 결과, 수도권 지역의 OC와 EC의 연평균 농도(${\mu}g/m^3$)는 각각 $4.1{\pm}2.7$, $1.6{\pm}1.0$으로 나타났다. 계절별로 살펴보면 봄: $4.0{\pm}2.2$, $1.8{\pm}0.8$; 여름: $3.6{\pm}2.7$, $1.4{\pm}0.9$; 가을: $3.6{\pm}2.4$, $1.3{\pm}0.9$; 겨울: $5.2{\pm}3.3$, $2.0{\pm}1.3$으로 나타나 겨울 > 봄 > 여름 > 가을 순으로 높은 농도를 나타냈으며, OC/EC 비는 2.4 ~ 3.4 수준으로 여름이 가장 높고 봄이 가장 낮은 수준을 보였다. 시간별 OC, EC 농도 변화를 살펴보면, 출 퇴근시간인 아침과 저녁에 증가하는 경향을 보였으며, OC/EC 비 역시 출 퇴근시간대의 교통량 증가로 인한 EC농도 증가로 인해 급격히 낮아지는 현상을 보여 수도권 지역의 탄소성 입자 농도에 가장 큰 영향을 주는 것은 자동차와 같은 교통수단인 것으로 판단된다. 이번 연구를 통해 수도권 지역 탄소성분의 배출특성 및 계절별 특징, 농도 수준을 파악하고, 대기질 개선 정책의 효과적인 수립을 위한 과학적인 기초자료의 제공이 가능할 것으로 판단된다.

Keywords

References

  1. 문광주, 박승명, 박종성, 송인호, 장성기, 김종춘, 이석조. 2011. 2010년도 서울시 대기 중$PM_{2.5}$의 성분특성 및 발생원 추정에 관한 연구, 한국대기환경학회지, 27(6), 711-722. https://doi.org/10.5572/KOSAE.2011.27.6.711
  2. 박진수, 김신도. 2005. 서울과 인천지역 $PM_{10}$$PM_{2.5}$ 중 2차생성 탄소성분 추정, 한국대기환경학회지, 21(1), 131-140.
  3. 이시혜, 김영성, 김상우, 윤순창. 2008. 서울과 고산의 에어로졸 화학성분과 광학특성의 계절변화, 한국대기환경학회지, 24(4), 470-482. https://doi.org/10.5572/KOSAE.2008.24.4.470
  4. 이영재, 박미경, 정선아, 김선정, 조미라, 송인호, 유영숙, 임용재, 김정훈, 정해진, 이상욱, 최원준, 안준영, 이민희, 강현정, 박승명, 서석준, 정동희, 현주경, 박종성, 황태경, 홍유덕, 홍지형, 신혜정. 2015. 한반도 권역별 대기 중 입자상 탄소 특성 연구, 한국대기환경학회지, 31(4), 330-344. https://doi.org/10.5572/KOSAE.2015.31.4.330
  5. 임세희, 이미혜, 강경식. 2010. 제주도 고산 $PM_{10},\;PM_{2.5},\;PM_{1.0}$ 중 OC와 EC의 계절적 변화 특성, 한국대기환경학회지, 26(5), 567-580. https://doi.org/10.5572/KOSAE.2010.26.5.567
  6. 한지현, 방병조, 이미혜, 윤순창, 김상우, 장임석, 강경식. 2013. 준실시간 연속관측을 통한 제주 고산 $PM_{2.5}$ OC와 EC의 계절별 사례별 특성, 한국대기환경학회지, 29(3), 237-250. https://doi.org/10.5572/KOSAE.2013.29.3.237
  7. 환경부. 2014. 수도권 대기환경 개선 대책 그 성과와 미래.
  8. Andreae MO, Rosenfeld D. 2008. Aerosol-cloudprecipitation interaction. Part 1. The nature and sources of cloud-active aerosol, Earth-Sci. Rev., 89(1-2), 13-41. https://doi.org/10.1016/j.earscirev.2008.03.001
  9. Bea MS, Hong CS, Kim YJ, Han JS, Moon KJ, Kondo Y, Kamazaki Y, Miyazaki Y. 2007. Inter-comparison of two different thermaloptical elemental carbons and optical black carbon during ABC-EAR-EX2005, Atmos. Environ., 41(13), 2791-2803. https://doi.org/10.1016/j.atmosenv.2006.11.040
  10. Chow JC, Watson JG, Lu Z, Lowenthal DH, Frazier CA, Solomon PA, Thuillier RH, Magliano K. 1996. Descriptive analysis of $PM_{2.5}$ and $PM_{10}$ at regionally representative locations during SJVAQS/AUSPEX, Atmos. Environ., 30(12), 2079-2112. https://doi.org/10.1016/1352-2310(95)00402-5
  11. Chow JC, Watson JG, Crow D, Lowenthal DH, Merrifield T. 2001. Comparison of IMPROVE and NIOSH carbon measurement, Aerosol Sci. Technol., 34(1), 23-34. https://doi.org/10.1080/02786820119073
  12. Chow JC, Watson JG, Louie PK, Chen LW, Sin D. 2005. Comparison of $PM_{2.5}$ carbon measurement methods in Hong Kong, China, Environ Pollut, 137(2), 334-344. https://doi.org/10.1016/j.envpol.2005.01.006
  13. Coa JJ, Lee SC, Ho KF, Zhang XY, Zou SC, Fung K, Chow JC, Watson JG. 2003. Characteristics of carbonaceous aerosol in pearl River Delta Region, China during 2001 winter period, Atmos. Environ., 37(11), 1451-1460. https://doi.org/10.1016/S1352-2310(02)01002-6
  14. Dan M, Zhuang G, Li X, Tao H, Zhuang Y. 2004. The characteristics of carbonaceous species and their sources in $PM_{2.5}$ in Beijing, Atmos. Environ., 38, 3443-3452. https://doi.org/10.1016/j.atmosenv.2004.02.052
  15. Gray HA, Cass GR, Huntzicker JJ, Heyerdahl EK, Rau JA. 1986. Characteristics of atmospheric organic and elemental carbon particle concentration in Los Angeles, Environ. Sci, Technol., 20, 580-582. https://doi.org/10.1021/es00148a006
  16. Han Y, Cao J, Chow JC, Watson JG, An Z, Jin Z, Fung K, Liu S. 2007. Evaluation of the thermal/optical reflectance method for discrimination between char- and soot-EC, Chemosphere, 69(4), 569-574. https://doi.org/10.1016/j.chemosphere.2007.03.024
  17. He Z, Kim YJ, Ogunjobi KO, Kim JE, Ryu SY. 2004. Carbonaceous aerosol characteristics of $PM_{2.5}$ particles in Northeastern Asia in summer 2002, Atmos. Environ., 38(12), 1795-1800. https://doi.org/10.1016/j.atmosenv.2003.12.023
  18. Ho KF, Lee SC, jimmy CY, Zou SC, Fung K. 2002. Carbonaceous characteristic of atmospheric matter in Hong Kong, The Science of the Total Environment, 300, 59-67. https://doi.org/10.1016/S0048-9697(02)00281-4
  19. Hopke P. 2009. Contemporary threats and air pollution, Atmos. Environ., 43, 87-93. https://doi.org/10.1016/j.atmosenv.2008.09.053
  20. Jacobson M. 2001. Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols, J. Geophys. Res., 106(D2), 1551-1568. https://doi.org/10.1029/2000JD900514
  21. Kim YP, Lee JH, Baik NJ, Kim JY, Shim SG, Kang CH. 1998. Summertime characteristics of aerosol composition at Cheju Island, Korea, Atmos. Environ., 32(22), 3905-3915. https://doi.org/10.1016/S1352-2310(98)00108-3
  22. Kim YP, Moon KC, Lee JH, Baik NJ. 1999. Concentrations of carbonaceous species in Particles at Seoul and Cheju in Korea, Atmos. Environ., 33, 2751-2758. https://doi.org/10.1016/S1352-2310(98)00313-6
  23. Leck C, Norman M, Bigg E, Hillamo R. 2002. Chemical composition and sources of high Arctic aerosol relevant for cloud formation, J. Geophys. Res., 107(D12), 4135. https://doi.org/10.1029/2001JD001463
  24. Lee M, Song M, Moon KJ, Han JS, Lee G, Kim KR. 2007. Origins and chemical characteristics of fine aerosols during the northeastern Asia regional experiment (Atmospheric Brown Cloud-East Asia Regional Experiment 2005), J. Geophys. Res., 112(D22), D22S29.
  25. Lin JJ, Tai HS. 2001. Concentrations and distributions of carbonaceous species in ambient particles in Kaohsiung city, Taiwan, Atmos. Environ., 35, 2627-2636. https://doi.org/10.1016/S1352-2310(00)00444-1
  26. Mader BT, Schauer JJ, Seinfeld JH, Flagan RC, Yu JZ, Yang H, Lim HJ, Turpin BJ, Deminter JT, Heidemann G, Bea MS, Quinn P, Bates T, Eatough DJ, Huebert BJ, Bertram T, Howell S. 2003. Sampling methods used for the collection of particle-phase organic and carbon during ACE-Asia, Atmos. Environ., 37(11), 1435-1449. https://doi.org/10.1016/S1352-2310(02)01061-0
  27. Maria SF, Gilles MK, Myneni SCB. 2004. Organic aerosol growth mechanisms and their climate-forcing implications, Science, 306(5703), 1921, doi:10.1126/science.1103491.
  28. Monks PS, Granier C, Fuzzi S, Stohl A, Williams ML, Akimoto H, Amann M, Baklanov A, Baltensperger U, Bey I, Blake N, Blake RS, Carslaw K, Cooper OR, Dentener F, Fowler D, Fragkou E, Frost GJ, Generoso S, Ginoux P, Grewe V, Guenther A, Hansson HC, Henne S, Hjorth J, Hofzumahaus A, Huntrieser H, Isaksen ISA, Jenkin ME, Kaiser J, Kanakidou M, Klimont Z, Kulmala M, Laj P, Lawrence MG, Lee JD, Liousse C, Maione M, McFiggans G, Metzger A, Mieville A, Moussiopoulos N, Orlando JJ, O'Dowd CD, Palmer PI, Parrish DD, Petzold A, Platt U, Poschl U, Prevot ASH, Reeves CE, Reimann S, Rudich Y, Sellegri K, Steinbrecher R, Simpson D, ten Brink H, Theloke J, van der Werf GR, Vautard R, Vestreng V, Vlachokostas C, von Glasow R. 2009. Atmospheric composition change-global and regional air quality, Atmos. Environ., 43(33), 5269-5350.
  29. Pang Y, Ren Y, Fida O, Robert H, Delbert E, William W. 2001. Semi-volatile species in PM2.5: comparison of integrated and continuous samples for $PM_{2.5}$ research or monitoring, J. Air Waste manage. Assoc., 51(1), 25-36. https://doi.org/10.1080/10473289.2001.10464252
  30. Park SS, Kim YJ, Fung K. 2002. PM2.5 carbon measurement in two urban areas: Seoul and Kwangju, Korea, Atmos. Environ., 36, 1287-1297. https://doi.org/10.1016/S1352-2310(01)00552-0
  31. Raes F, Bates T, McGovern F, van Liedekerke M. 2000. The 2nd Aerosol Characterization Experiment(ACE-2): general overview and main results, Tellus B., 52, 111-125. https://doi.org/10.1034/j.1600-0889.2000.00124.x
  32. Ramanathan V, Carmichael G. 2008. Global and regional climate changes due to black carbon, Nature Geoscience, 1, 221-227. https://doi.org/10.1038/ngeo156
  33. Rattigan O, Felton H, Bae M, Schwab J, Demerjian K. 2010. Multi-year hourly PM2.5 carbon measurements in New York: Diurnal, day of week and seasonal patterns, Atmos. Environ., 44, 2043-2053. https://doi.org/10.1016/j.atmosenv.2010.01.019
  34. Russell LM, Maria SF, Myneni SCB. 2002. Mapping organic coatings on atmospheric particles, Geophys. Res. Lett., 29(16), 1779, doi: 10.1029/2002GL014874.
  35. Salma I, Chi X, Maenhaut W. 2004. Elemental and organic carbon in urban canyon and background environments in Budapest, Hungary, Atmos. Environ., 38, 27-36. https://doi.org/10.1016/j.atmosenv.2003.09.047
  36. Schmidt M, Noack A. 2000. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges, Global Biogeochem. Cycles, 14(3), 777-793. https://doi.org/10.1029/1999GB001208
  37. Solomon P, Baumann K, Edgerton E, Tanner R, Eatiugh D, Modey W, Marin H, Savoie D, Natarajan S, Meyer MB, Norris G. 2003. Comparison of integrated samplers for mass and composition during the 1999 Atlanta Supersites project, J. Geophys. Res., 108(D7), 8423, doi:10.1029/2001JD001218.
  38. Streets DG, Gupta S, Waldhoff ST, Wang MQ, Bond TC, Yiyun B. 2001. Black carbon emissions in China, Atmos. Environ., 35(25), 4281-4296. https://doi.org/10.1016/S1352-2310(01)00179-0
  39. Streets DG, Bond TC, Carmichael GR, Fernandes SD, Fu Q, He D, Kilmont Z, Nelson SM, Tsai NY, Wang MQ, Woo JH, Yarber KF. 2003. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000, Geophys. Res., 108(D21), 8809, doi:10.1029/2002JD003093.
  40. Szidat S, Ruff M, Perron N, Wacker L, Synal HA, Hallqusit M, Shannigrahi AS, Yttri KE, Dye C, Simpson D. 2009. Fossil and non-fossil sources of organic carbon (OC) and elemental carbon (EC) in Goteborg, Sweden, Atmos. Chem. Phys., 9, 1521-1535.
  41. Viana M, Maenhaut W, ten Brink HH, Chi X, Weijers E, Querol X, Alastuey A, Mikuska P, Vecera Z. 2007. Comparative analysis of organic and elemental carbon concentrations in carbonaceous aerosols in three European cities, Atmos. Environ., 41(28), 5972-5983. https://doi.org/10.1016/j.atmosenv.2007.03.035
  42. Watson JG, Chow JC, Lowenthal DH, Pritchett LC, Frazier CA. 1994. Differences in the carbon composition of source profiles for Diesel- and Gasoline-powered vehicles, Atmos. Environ., 28(15), 2493-2505. https://doi.org/10.1016/1352-2310(94)90400-6
  43. Yang F, He K, Ye B, Chen X, Cha L, Cadle SH, Chan T, Mulawa PA. 2005. One-Year record of organic and elemental carbon in fine particles in downtown Beijing and Shanghai, Atmos. Chem. Phys., 5, 1449-1457. https://doi.org/10.5194/acp-5-1449-2005
  44. Yu XY, Cary RA, Laulainen NS. 2009. Primary and secondary organic carbon downwind of Mexico City, Atmos. Chem. Phys., 9(18), 6793-6814. https://doi.org/10.5194/acp-9-6793-2009

Cited by

  1. Temporal-spatial characteristics and source apportionment of PM 2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China vol.233, 2018, https://doi.org/10.1016/j.envpol.2017.10.123
  2. Spacial Distribution of PM1.0 Major Compounds from Long Range Transport at the Baegryungdo Super Site: Relationship between PSCF and Cluster Analysis vol.33, pp.4, 2017, https://doi.org/10.5572/KOSAE.2017.33.4.411
  3. PM2.5 Concentrations and Chemical Compositions in Jeonju from 2017 to 2018 vol.34, pp.6, 2018, https://doi.org/10.5572/KOSAE.2018.34.6.876
  4. Impact of air pollution control measures and regional transport on carbonaceous aerosols in fine particulate matter in urban Beijing, China: insights gained from long-term measurement vol.19, pp.13, 2015, https://doi.org/10.5194/acp-19-8569-2019
  5. 서울의 블랙카본 특성 연구 vol.28, pp.2, 2015, https://doi.org/10.14249/eia.2019.28.2.113
  6. A Study on the Seasonal Correlation between O3 and PM2.5 in Seoul in 2017 vol.36, pp.4, 2015, https://doi.org/10.5572/kosae.2020.36.4.533
  7. Seasonal variation of carbonaceous species in PM1 measured over residential area of Delhi, India vol.2, pp.12, 2015, https://doi.org/10.1007/s42452-020-03854-0
  8. Fifteen-year trends in carbon species and PM2.5 in Seoul, South Korea (2003–2017) vol.261, pp.None, 2020, https://doi.org/10.1016/j.chemosphere.2020.127750
  9. Spatial Concentration of Carbon Components in Indoor PM2.5 of School Classrooms in a Large City of Korea vol.11, pp.16, 2015, https://doi.org/10.3390/app11167328
  10. Elemental Carbon Observed at a Peri-Urban Forest Site near the Seoul Metropolitan Area as a Tracer of Seasonal Haze Occurrence vol.12, pp.12, 2015, https://doi.org/10.3390/atmos12121627