• Title/Summary/Keyword: laboratory model

Search Result 5,737, Processing Time 0.049 seconds

Evaluation of LOADEST Model Applicability for NPS Pollutant loads Estimation from Agricultural Watershed (농촌유역의 비점원오염부하 산정을 위한 LOADEST 모델의 적용성 평가)

  • Shin, Min hwan;Seo, Ji yeon;Choi, Yong hun;Kim, Jonggun;Shin, Dongsuk;Lee, Yeoul-Jae;Jung, Myung-Sook;Lim, Kyoung Jae;Choi, Joongdae
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.212-220
    • /
    • 2009
  • In many studies, the Numeric Integration (NI) method has been widely used to calculate pollutant loads from the watershed because it is easy to apply. However, there have been many needs for more accurate pollutant loads estimation method with the restricted number of water quality samples. However, the ESTIMATOR model does not allow the users to define the regression model to explain the measured flow and water quality relationship, indicating the ESTIMATOR model is not flexible. The LOADEST model allows the user to choose the model type from 11 predefined general forms of regression equations. Annual loads of T-N and T-P with the LOADEST model were 0.70 times and 0.84 times of those by NI method, respectively. The coefficient of determination ($R^2$) of the LOADEST regression for the T-N and T-P were 0.92 and 0.72, respectively. This indicates that the load estimation regression model with the LOADEST for the study watershed explains the relationship between the observed flow and water quality data well reasonably well. Based on these findings, we suggest that the LOADEST model estimated regression equation could be used to estimate pollutant loads using the measured flow data for the study watershed.

A predicting model for thermal conductivity of high permeability-high strength concrete materials

  • Tan, Yi-Zhong;Liu, Yuan-Xue;Wang, Pei-Yong;Zhang, Yu
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.49-57
    • /
    • 2016
  • The high permeability-high strength concrete belongs to the typical of porous materials. It is mainly used in underground engineering for cold area, it can act the role of heat preservation, also to be the bailing and buffer layer. In order to establish a suitable model to predict the thermal conductivity and directly applied for engineering, according to the structure characteristics, the thermal conductivity predicting model was built by resistance network model of parallel three-phase medium. For the selected geometric and physical cell model, the thermal conductivity forecast model can be set up with aggregate particle size and mixture ratio directly. Comparing with the experimental data and classic model, the prediction model could reflect the mixture ratio intuitively. When the experimental and calculating data are contrasted, the value of experiment is slightly higher than predicting, and the average relative error is about 6.6%. If the material can be used in underground engineering instead by the commonly insulation material, it can achieve the basic requirements to be the heat insulation material as well.

Robustness Improvement and Assessment of EARSM k-ω Model for Complex Turbulent Flows

  • Zhang, Qiang;Li, Dian;Xia, ZhenFeng;Yang, Yong
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.67-72
    • /
    • 2015
  • The main concern of this study is to integrate the EARSM into an industrial RANS solver in conjunction with the $k-{\omega}$ model, as proposed by Hellsten (EARSMKO2005). In order to improve the robustness, particular limiters are introduced to turbulent conservative variables, and a suitable full-approximation storage (FAS) multi-grid (MG) strategy is designed to incorporate turbulence model equations. The present limiters and MG strategy improve both robustness and efficiency significantly but without degenerating accuracy. Two discretization approachs for velocity gradient on cell interfaces are implemented and compared with each other. Numerical results of a three-dimensional supersonic square duct flow show that the proper discretization of velocity gradient improves the accuracy essentially. To assess the capability of the resulting EARSM $k-{\omega}$ model to predict complex engineering flow, the case of Common Research Model (CRM, Wing-Body) is performed. All the numerical results demonstrate that the resulting model performs well and is comparable to the standard two-equation models such as SST $k-{\omega}$ model in terms of computational effort, thus it is suitable for industrial applications.

A Research on Dynamic Tension Response of Model Mooring Chain by Forced Oscillation Test (강제동요 시험을 이용한 모형 계류삭의 동적 응답 연구)

  • Kim, Hyun-Joe;Hong, Sa-Young;Hong, Sup;Cho, Suk-Kyu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.134-141
    • /
    • 2002
  • A series of forced oscillation test on model mooring chain was carried out to investigate dynamic tension characteristics. The model test was conducted at two different water depth to gather basic data for 'truncated mooring test' and 'hybrid mooring test'. The truncated and hybrid mooring test are highly recommended to overcome the limitation of water depth in model test recently. The resultant tension RAO gives good possibility of approximation of dynamic tension by equivalent weight adjustment for the ratio of water depth in different water depth. Because the hybrid mooring test is the adequate combination of model test and simulation, accurate simulation model on mooring system is essential. The simulation results show good agreement with model test results.

  • PDF

A hardening model considering grain size effect for ion-irradiated polycrystals under nanoindentation

  • Liu, Kai;Long, Xiangyun;Li, Bochuan;Xiao, Xiazi;Jiang, Chao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2960-2967
    • /
    • 2021
  • In this work, a new hardening model is proposed for the depth-dependent hardness of ion-irradiated polycrystals with obvious grain size effect. Dominant hardening mechanisms are addressed in the model, including the contribution of dislocations, irradiation-induced defects and grain boundaries. Two versions of the hardening model are compared, including the linear and square superposition models. A succinct parameter calibration method is modified to parametrize the models based on experimentally obtained hardness vs. indentation depth curves. It is noticed that both models can well characterize the experimental data of unirradiated polycrystals; whereas, the square superposition model performs better for ion-irradiated materials, therefore, the square superposition model is recommended. In addition, the new model separates the grain size effect from the dislocation hardening contribution, which makes the physical meaning of fitted parameters more rational when compared with existing hardness analysis models.

Carbonation depth estimation in reinforced concrete structures using revised empirical model and oxygen permeability index

  • Chandra Harshitha;Bhaskar Sangoju;Ramesh Gopal
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.241-252
    • /
    • 2023
  • Corrosion of rebar is one of the major deteriorating mechanisms that affect the durability of reinforced concrete (RC) structures. The increase in CO2 concentration in the atmosphere leads to early carbonation and deterioration due to corrosion in RC structures. In the present study, an attempt has been made to modify the existing carbonation depth prediction empirical model. The modified empirical model is verified from the carbonation data collected from selected RC structures of CSIR-SERC campus, Chennai and carbonation data available from the reported literature on in-situ RC structures. Attempt also made to study the carbonation depth in the laboratory specimens using oxygen permeability index (OPI) test. The carbonation depth measured from RC structures and laboratory specimens are compared with estimated carbonation depth obtained from OPI test data. The modified empirical model shows good correlation with measured carbonation depth from the identified RC structures and the reported RC structures from the literature. The carbonation depth estimated from OPI values for both in-situ and laboratory specimens show lesser percentage of error compared to measured carbonation depth. From the present investigation it can be said that the OPI test is the suitable test method for both new and existing RC structures and laboratory RC specimens.

Shaking Table Model Test of Shanghai Tower

  • Lu, Xilin;Mao, Yuanjun;Lu, Wensheng;Kang, Liping
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.1
    • /
    • pp.79-83
    • /
    • 2013
  • Shaking table test is an important and useful method to help structural engineers get better knowledge about the seismic performance of the buildings with complex structure, just like Shanghai tower. According to Chinese seismic design guidelines, buildings with a very complex and special structural system, or whose height is far beyond the limitation of interrelated codes, should be firstly studied through the experiment on seismic behavior. To investigate the structural response, the weak storey and crack pattern under earthquakes of different levels, and to help the designers improve the design scheme, the shaking table model tests of a scaled model of Shanghai tower were carried out at the State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China. This paper describes briefly the structural system, the design method and manufacture process of the scaled model, and the test results as well.

Stress analysis model for un-bonded umbilical cables

  • Chen, Xiqia;Fu, Shixiao;Song, Leijian;Zhong, Qian;Huang, Xiaoping
    • Ocean Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.97-122
    • /
    • 2013
  • For the optimization design and strength evaluation of the umbilical cable, the calculation of cross section stress is of great importance and very time consuming. To calculate the cross section stress under combined tension and bending loads, a new integrated analytical model of umbilical cable is presented in this paper. Based on the Hook's law, the axial strain of helical components serves as the tensile stress. Considering the effects of friction between helical components, the bending stress is divided into elastic bending stress and friction stress. For the former, the elastic bending stress, the curvature of helical components is deduced; and for the latter, the shear stress before and after the slipping of helical components is determined. This new analytical model is validated by the experimental results of an umbilical cable. Further, this model is applied to estimate the extreme strength and fatigue life of the umbilical cable used in South China Sea.