Browse > Article
http://dx.doi.org/10.1016/j.net.2021.03.007

A hardening model considering grain size effect for ion-irradiated polycrystals under nanoindentation  

Liu, Kai (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University)
Long, Xiangyun (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University)
Li, Bochuan (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University)
Xiao, Xiazi (Department of Mechanics, School of Civil Engineering, Central South University)
Jiang, Chao (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University)
Publication Information
Nuclear Engineering and Technology / v.53, no.9, 2021 , pp. 2960-2967 More about this Journal
Abstract
In this work, a new hardening model is proposed for the depth-dependent hardness of ion-irradiated polycrystals with obvious grain size effect. Dominant hardening mechanisms are addressed in the model, including the contribution of dislocations, irradiation-induced defects and grain boundaries. Two versions of the hardening model are compared, including the linear and square superposition models. A succinct parameter calibration method is modified to parametrize the models based on experimentally obtained hardness vs. indentation depth curves. It is noticed that both models can well characterize the experimental data of unirradiated polycrystals; whereas, the square superposition model performs better for ion-irradiated materials, therefore, the square superposition model is recommended. In addition, the new model separates the grain size effect from the dislocation hardening contribution, which makes the physical meaning of fitted parameters more rational when compared with existing hardness analysis models.
Keywords
Hardness; Ion irradiation; Grain size effect; Theoretical model; Nanoindentation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 X. Xiao, L. Yu, A hardening model for the cross-sectional nanoindentation of ion-irradiated materials, J. Nucl. Mater. 511 (2018) 220-230.   DOI
2 C. Xu, L. Zhang, W. Qian, J. Mei, X. Liu, The studies of irradiation hardening of stainless steel reactor internals under proton and xenon irradiation, Nuclear Engineering and Technology 48 (3) (2016) 758-764.   DOI
3 C. Heintze, F. Bergner, S. Akhmadaliev, E. Altstadt, Ion irradiation combined with nanoindentation as a screening test procedure for irradiation hardening, J. Nucl. Mater. 472 (2016) 196-205.   DOI
4 C. Heintze, F. Bergner, M. Hernandez-Mayoral, Ion-irradiation-induced damage in Fe-Cr alloys characterized by nanoindentation, J. Nucl. Mater. 417 (1) (2011) 980-983.   DOI
5 Z.Y. Fu, P.P. Liu, F.R. Wan, Q. Zhan, Helium and hydrogen irradiation induced hardening in CLAM steel, Fusion Eng. Des. 91 (2015) 73-78.   DOI
6 S.J. Zinkle, J.T. Busby, Structural materials for fission & fusion energy, Mater. Today 12 (11) (2009) 12-19.   DOI
7 W.Q. Chen, X.Z. Xiao, B. Pang, S.S. Si, Y.Z. Jia, B. Xu, T.W. Morgan, W. Liu, Y.L. Chiu, Irradiation hardening induced by blistering in tungsten due to low-energy high flux hydrogen plasma exposure, J. Nucl. Mater. 522 (2019) 11-18.   DOI
8 A. Prasitthipayong, S.J. Vachhani, S.J. Tumey, A.M. Minor, P. Hosemann, Indentation size effect in unirradiated and ion-irradiated 800H steel at high temperatures, Acta Mater. 144 (2018) 896-904.   DOI
9 Z. Fan, S. Zhao, K. Jin, D. Chen, Y.N. Osetskiy, Y. Wang, H. Bei, K.L. More, Y. Zhang, Helium irradiated cavity formation and defect energetics in Ni-based binary single-phase concentrated solid solution alloys, Acta Mater. 164 (2019) 283-292.   DOI
10 C.D. Hardie, S.G. Roberts, A.J. Bushby, Understanding the effects of ion irradiation using nanoindentation techniques, J. Nucl. Mater. 462 (2015) 391-401.   DOI
11 X. Xiao, L. Chen, L. Yu, H. Duan, Modelling nano-indentation of ion-irradiated FCC single crystals by strain-gradient crystal plasticity theory, Int. J. Plast. 116 (2019) 216-231.   DOI
12 C. Yan, R. Wang, Y. Wang, X. Wang, G. Bai, Effects of ion irradiation on microstructure and properties of zirconium alloys-a review, Nuclear Engineering and Technology 47 (3) (2015) 323-331.   DOI
13 G.J. Weng, A micromechanical theory of grain-size dependence in metal plasticity, J. Mech. Phys. Solid. 31 (3) (1983) 193-203.   DOI
14 S.I. Kim, B.H. Kim, J.L. Kim, J.I. Lee, A review of neutron scattering correction for the calibration of neutron survey meters using the shadow cone method, Nuclear Engineering and Technology 47 (7) (2015) 939-944.   DOI
15 R. Kasada, S. Konishi, K. Yabuuchi, S. Nogami, M. Ando, D. Hamaguchi, H. Tanigawa, Depth-dependent nanoindentation hardness of reduced-activation ferritic steels after MeV Fe-ion irradiation, Fusion Eng. Des. 89 (7) (2014) 1637-1641.   DOI
16 P. Sun, Y. Wang, M. Frost, C. Schonwalder, A.L. Levitan, M. Mo, Z. Chen, J.B. Hastings, G.R. Tynan, S.H. Glenzer, P. Heimann, Characterization of defect clusters in ion-irradiated tungsten by X-Ray diffuse scattering, J. Nucl. Mater. 510 (2018) 322-330.   DOI
17 D. Chen, K. Murakami, K. Dohi, K. Nishida, N. Soneda, Z. Li, L. Liu, N. Sekimura, Depth distribution of Frank loop defects formed in ion-irradiated stainless steel and its dependence on Si addition, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 365 (2015) 503-508.   DOI
18 W.D. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity, J. Mech. Phys. Solid. 46 (3) (1998) 411-425.   DOI
19 Y. Wang, H. Choo, Influence of texture on Hall-Petch relationships in an Mg alloy, Acta Mater. 81 (2014) 83-97.   DOI
20 X. Hou, N.M. Jennett, Application of a modified slip-distance theory to the indentation of single-crystal and polycrystalline copper to model the interactions between indentation size and structure size effects, Acta Mater. 60 (10) (2012) 4128-4135.   DOI
21 G.I. Taylor, The mechanism of plastic deformation of crystals. Part I. Theoretical, Proc. Roy. Soc. Lond. 145 (855) (1934) 362-387.
22 T. Miura, K. Fujii, K. Fukuya, K. Takashima, Influence of crystal orientation on hardness and nanoindentation deformation in ion-irradiated stainless steels, J. Nucl. Mater. 417 (1-3) (2011) 984-987.   DOI
23 D. Tabor, A simple theory of static and dynamic hardness, Proc. Roy. Soc. Lond. Math. Phys. Sci. 192 (1029) (1948) 247-274.
24 M. Dade, J. Malaplate, J. Garnier, F. De Geuser, F. Barcelo, P. Wident, A. Deschamps, Influence of microstructural parameters on the mechanical properties of oxide dispersion strengthened Fe-14Cr steels, Acta Mater. 127 (2017) 165-177.   DOI
25 A.L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I-Yield Criteria and Flow Rules for Porous Ductile Media, 1977.
26 G. Monnet, C. Mai, Prediction of irradiation hardening in austenitic stainless steels: analytical and crystal plasticity studies, J. Nucl. Mater. 518 (2019) 316-325.   DOI
27 G.I. Taylor, Plastic strain in metals, J. Inst. Met. 62 (1938) 307-324.
28 G.M. Cheng, W.Z. Xu, Y.Q. Wang, A. Misra, Y.T. Zhu, Grain size effect on radiation tolerance of nanocrystalline Mo, Scripta Mater. 123 (2016) 90-94.   DOI
29 M. Ashby, The deformation of plastically non-homogeneous materials, Phil. Mag.: A Journal of Theoretical Experimental and Applied Physics 21 (170) (1970) 399-424.   DOI
30 H. Huang, J. Li, D. Li, R. Liu, G. Lei, Q. Huang, L. Yan, TEM, XRD and nanoindentation characterization of Xenon ion irradiation damage in austenitic stainless steels, J. Nucl. Mater. 454 (1-3) (2014) 168-172.   DOI
31 D. Whitley, A genetic algorithm tutorial, Stat. Comput. 4 (2) (1994) 65-85.   DOI
32 X. Xiao, D. Terentyev, L. Yu, A. Bakaev, Z. Jin, H. Duan, Investigation of the thermo-mechanical behavior of neutron-irradiated Fe-Cr alloys by self-consistent plasticity theory, J. Nucl. Mater. 477 (2016) 123-133.   DOI
33 J.F. Nye, Some geometrical relations in dislocated crystals, Acta Metall. 1 (2) (1953) 153-162.   DOI
34 E. Orowan, A type of plastic deformation new in metals, Nature 149 (3788) (1942) 643-644.   DOI
35 X. Xiao, Q. Chen, H. Yang, H. Duan, J. Qu, A mechanistic model for depthdependent hardness of ion irradiated metals, J. Nucl. Mater. 485 (2017) 80-89.   DOI
36 X. Xiao, L. Yu, Comparison of linear and square superposition hardening models for the surface nanoindentation of ion-irradiated materials, J. Nucl. Mater. 503 (2018) 110-115.   DOI
37 E.O. Hall, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc. B 64 (9) (1951) 747-753.   DOI
38 A. Singh, Y. Osawa, H. Somekawa, T. Mukai, Effect of microstructure on strength and ductility of high strength quasicrystal phase dispersed Mg-Zn-Y alloys, Mater. Sci. Eng., A 611 (2014) 242-251.   DOI
39 H. Yu, Y. Xin, M. Wang, Q. Liu, Hall-Petch relationship in Mg alloys: a review, J. Mater. Sci. Technol. 34 (2) (2018) 248-256.   DOI
40 Y. Ha, A. Kimura, Effect of recrystallization on ion-irradiation hardening and microstructural changes in 15Cr-ODS steel, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 365 (2015) 313-318.   DOI
41 E. Hug, R. Prasath Babu, I. Monnet, A. Etienne, F. Moisy, V. Pralong, N. Enikeev, M. Abramova, X. Sauvage, B. Radiguet, Impact of the nanostructuration on the corrosion resistance and hardness of irradiated 316 austenitic stainless steels, Appl. Surf. Sci. 392 (2017) 1026-1035.   DOI
42 C. Heintze, I. Hilger, F. Bergner, T. Weissgarber, B. Kieback, Nanoindentation of single- (Fe) and dual-beam (Fe and He) ion-irradiated ODS Fe-14Cr-based alloys: effect of the initial microstructure on irradiation-induced hardening, J. Nucl. Mater. 518 (2019) 1-10.   DOI
43 Y. Huang, F. Zhang, K.C. Hwang, W.D. Nix, G.M. Pharr, G. Feng, A model of size effects in nano-indentation, J. Mech. Phys. Solid. 54 (8) (2006) 1668-1686.   DOI
44 G.S. Was, Z. Jiao, E. Getto, K. Sun, A.M. Monterrosa, S.A. Maloy, O. Anderoglu, B.H. Sencer, M. Hackett, Emulation of reactor irradiation damage using ion beams, Scripta Mater. 88 (2014) 33-36.   DOI
45 P. Song, J. Gao, K. Yabuuchi, A. Kimura, Ion-irradiation hardening accompanied by irradiation-induced dissolution of oxides in FeCr(Y, Ti)-ODS ferritic steel, J. Nucl. Mater. 511 (2018) 200-211.   DOI
46 B. Guan, Y. Xin, X. Huang, P. Wu, Q. Liu, Quantitative prediction of texture effect on Hall-Petch slope for magnesium alloys, Acta Mater. 173 (2019) 142-152.   DOI