• 제목/요약/키워드: laboratory analysis

검색결과 10,146건 처리시간 0.034초

근적외선 분광법을 이용한 고순도 SiCI4 중의 미량 불순물 SiHCI3의 분석 (Analysis of Trace Trichlorosilane in High Purity Silicon Tetrachloride by Near-IR Spectroscopy)

  • 박찬조;이석근
    • 분석과학
    • /
    • 제15권1호
    • /
    • pp.87-90
    • /
    • 2002
  • The content of $SiHCl_3$ as a trace impurity in $SiCl_4$ was analyzed by Near IR spectrophotometer with optical fiber. The strong absorption bands of $5345{\sim}5116cm^{-1}$ and $4848{\sim}4349cm^{-1}$ were used for analysis of $SiHCl_3$, and the detection limit of impurity $SiCl_3$ was appeared to be 0.005 % in the spectrum. The quantitative analysis by Near IR spectrophotometry showed the analytical possibility of trace impurity in $SiCl_4$ without sample pre-treatment not only in the laboratory but also in the field.

A response surface method based on sub-region of interest for structural reliability analysis

  • Zhao, Weitao;Shi, Xueyan;Tang, Kai
    • Structural Engineering and Mechanics
    • /
    • 제57권4호
    • /
    • pp.587-602
    • /
    • 2016
  • In structural reliability analysis, the response surface method is widely adopted because of its numerical efficiency. It should be understood that the response function must approximate the actual limit state function accurately in the main region influencing failure probability where it is evaluated. However, the size of main region influencing failure probability was not defined clearly in current response surface methods. In this study, the concept of sub-region of interest is constructed, and an improved response surface method is proposed based on the sub-region of interest. The sub-region of interest can clearly define the size of main region influencing failure probability, so that the accuracy of the evaluation of failure probability is increased. Some examples are introduced to demonstrate the efficiency and the accuracy of the proposed method for both numerical and implicit limit state functions.

Analysis of delay compensation in real-time dynamic hybrid testing with large integration time-step

  • Zhu, Fei;Wang, Jin-Ting;Jin, Feng;Gui, Yao;Zhou, Meng-Xia
    • Smart Structures and Systems
    • /
    • 제14권6호
    • /
    • pp.1269-1289
    • /
    • 2014
  • With the sub-stepping technique, the numerical analysis in real-time dynamic hybrid testing is split into the response analysis and signal generation tasks. Two target computers that operate in real-time may be assigned to implement these two tasks, respectively, for fully extending the simulation scale of the numerical substructure. In this case, the integration time-step of solving the dynamic response of the numerical substructure can be dozens of times bigger than the sampling time-step of the controller. The time delay between the real and desired feedback forces becomes more striking, which challenges the well-developed delay compensation methods in real-time dynamic hybrid testing. This paper focuses on displacement prediction and force correction for delay compensation in the real-time dynamic hybrid testing with a large integration time-step. A new displacement prediction scheme is proposed based on recently-developed explicit integration algorithms and compared with several commonly-used prediction procedures. The evaluation of its prediction accuracy is carried out theoretically, numerically and experimentally. Results indicate that the accuracy and effectiveness of the proposed prediction method are of significance.

Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory

  • Belbachir, Nasrine;Bourada, Mohamed;Draiche, Kada;Tounsi, Abdelouahed;Bourada, Fouad;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • 제25권4호
    • /
    • pp.409-422
    • /
    • 2020
  • This article deals with the flexural analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal loading using a refined plate theory with four variables. In this theory, the undetermined integral terms are used and the number of variables is reduced to four, instead of five or more in other higher-order theories. The boundary conditions on the top and the bottom surfaces of the plate are satisfied; hence the use of the transverse shear correction factors is avoided. The principle of virtual work is used to obtain governing equations and boundary conditions. Navier solution for simply supported plates is used to derive analytical solutions. For the validation of the present theory, numerical results for displacements and stresses are compared with those of classical, first-order, higher-order and trigonometric shear theories reported in the literature.

Statistical analysis and modelization of tool life and vibration in dry face milling of AISI 52100 STEEL in annealed and hardened conditions

  • Benghersallah, Mohieddine;Medjber, Ali;Zahaf, Mohamed Zakaria;Tibakh, Idriss;Amirat, Abdelaziz
    • Advances in materials Research
    • /
    • 제9권3호
    • /
    • pp.189-202
    • /
    • 2020
  • The objective of the present work is to investigate the effect of cutting parameters (Vc, fz and ap) on tool life and the level of vibrations velocity in the machined part during face milling operation of hardened AISI 52100 steel. Dry-face milling has been achieved in the annealed (28 HRc) and quenched (55 HRc) conditions using multi-layer coating micro-grain carbide inserts. Statistical analysis based on the Response surface methodology (RSM) and ANOVA analysis have been conducted through a plan of experiments methodology using a reduced Taguchi table (L9) in order to obtain engineering models for tool life and vibration velocity in the workpiece for both heat treatment conditions. The results show that the cutting speed has a dominant influence on tool life for both soft and hard part. Cutting speed and feed per tooth is the most significant parameters for vibration levels. Comparing the experimental values with those predicted by the developed engineering models of tool life and levels of vibrations velocity, a good correlation has been obtained (between 97% and 99%) in annealed and hard conditions.

활동기준원가시스템을 이용한 임상병리과 검사 서비스 원가 분석 (The Study on the Cost Analysis Based on ABC System in Clinical Laboratory)

  • 전기홍;김보경;안태식;조우현
    • 보건행정학회지
    • /
    • 제8권2호
    • /
    • pp.88-109
    • /
    • 1998
  • The main purpose of this study is to compare the traditional cost system and ABC(Activity Based Cost) system of clinical laboratory department in a hospital. The study subject was 296 services in clinical laboratory from March, 1997 to August, 1997. In a new costing system, cost for a lab test consist of direct cost element, activity based cost element, and allocated common cost element. In a traditional cost system, cost elements included direct cost element and indirect cost allocated based on test volumes The major findings of this research were as follows. 1. In the application of ABC system, total cost was analyzed as follows. Direct cost was 39.3% of total cost. Activity cost and allocation were 20.9% and 39.8%, respectively. The results of analysis to use traditional cost system were as follows. Direct cost was 39.3% and it was as same as the result of direct cost of ABC system. Indirect cost was 60.7%. 2. Activities of clinical laboratory of subject hospital were registration, pre-test operation, test, test result handling, delivery, culture, post-test operation, technical support, management support, and educational support. 3. The differences of the case of higher number of test case being carried out, the cost of ABC system was lower than the cost of traditional cost system. Otherwise in the case of lower number of test case being carried out, the rests have not been appropriately evaluated, and effective management were needed in clinical laboratory.

  • PDF

Curing Kinetics and Chemorheological Behavior of No-flow Underfill for Sn/In/Bi Solder in Flexible Packaging Applications

  • Eom, Yong-Sung;Son, Ji-Hye;Bae, Hyun-Cheol;Choi, Kwang-Seong;Lee, Jin-Ho
    • ETRI Journal
    • /
    • 제38권6호
    • /
    • pp.1179-1189
    • /
    • 2016
  • A chemorheological analysis of a no-flow underfill was conducted using curing kinetics through isothermal and dynamic differential scanning calorimetry, viscosity measurement, and solder (Sn/27In/54Bi, melting temperature of $86^{\circ}C$) wetting observations. The analysis used an epoxy system with an anhydride curing agent and carboxyl fluxing capability to remove oxide on the surface of a metal filler. A curing kinetic of the no-flow underfill with a processing temperature of $130^{\circ}C$ was successfully completed using phenomenological models such as autocatalytic and nth-order models. Temperature-dependent kinetic parameters were identified within a temperature range of $125^{\circ}C$ to $135^{\circ}C$. The phenomenon of solder wetting was visually observed using an optical microscope, and the conversion and viscosity at the moment of solder wetting were quantitatively investigated. It is expected that the curing kinetics and rheological property of a no-flow underfill can be adopted in arbitrary processing applications.

Neutronics analysis of JSI TRIGA Mark II reactor benchmark experiments with SuperMC3.3

  • Tan, Wanbin;Long, Pengcheng;Sun, Guangyao;Zou, Jun;Hao, Lijuan
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1715-1720
    • /
    • 2019
  • Jozef Stefan Institute (JSI), TRIGA Mark II reactor employs the homogeneous mixture of uranium and zirconium hydride fuel type. Since its upgrade, a series of fresh fuel steady state experimental benchmarks have been conducted. The benchmark results have provided data for testing computational neutronics codes which are important for reactor design and safety analysis. In this work, we investigated the JSI TRIGA Mark II reactor neutronics characteristics: the effective multiplication factor and two safety parameters, namely the control rod worth and the fuel temperature reactivity coefficient using SuperMC. The modeling and real-time cross section generation methods of SuperMC were evaluated in the investigation. The calculation analysis indicated the following: the effective multiplication factor was influenced by the different cross section data libraries; the control rod worth evaluation was better with Monte Carlo codes; the experimental fuel temperature reactivity coefficient was smaller than calculated results due to change in water temperature. All the results were in good agreement with the experimental values. Hence, SuperMC could be used for the designing and benchmarking of other TRIGA Mark II reactors.

Development of a multi criteria decision analysis framework for the assessment of integrated waste management options for irradiated graphite

  • Abrahamsen-Mills, Liam;Wareing, Alan;Fowler, Linda;Jarvis, Richard;Norris, Simon;Banford, Anthony
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1224-1235
    • /
    • 2021
  • An integrated waste management approach for irradiated graphite was developed during the European Commission project 'Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste'. This included the identification of potential options for the management of irradiated graphite, taking account of storage, retrieval, treatment and disposal methods. This paper describes how these options can be assessed using multi-criteria decision analysis (MCDA) for a case study relating to a generic power reactor. Criteria have been defined to account for safety, environmental, economic and socio-political factors, including radiological impact, resource usage, economic costs and risks. The impact of each option against each criterion has been assessed using data from the project and the wider literature. A linear additive approach has been used to convert the calculated impacts to scores. To account for the relative importance of the criteria, example weightings were allocated. This application has shown that MCDA approaches can be used to support complex decisions regarding irradiated graphite management, accounting for a wide range of criteria. Use of this approach by individual countries or organisations will need to account for the specific options, scores, weightings and constraints that apply, based on their national strategies, regulatory requirements and public acceptability.

Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method

  • Bakoura, Ahmed;Bourada, Fouad;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Tounsi, Abdelouahed;Al-Zahrani, Mesfer Mohammad;Mahmoud, S.R.
    • Computers and Concrete
    • /
    • 제27권1호
    • /
    • pp.73-83
    • /
    • 2021
  • In this article, the mechanical buckling analysis of simply-supported functionally graded plates is carried out using a higher shear deformation theory (HSDT) in conjunction with the stress function method. The proposed formulation is variationally consistent, does not use a shear correction factor and gives rise to a variation of transverse shear stress such that the transverse shear stresses vary parabolically through the thickness satisfying the surface conditions without stress of shear. The properties of the plate are supposed to vary across the thickness according to a simple power law variation in terms of volume fraction of the constituents of the material. Numerical results are obtained to study the influences of the power law index and the geometric ratio on the critical buckling load.