Browse > Article
http://dx.doi.org/10.1016/j.net.2019.05.014

Neutronics analysis of JSI TRIGA Mark II reactor benchmark experiments with SuperMC3.3  

Tan, Wanbin (Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences)
Long, Pengcheng (Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences)
Sun, Guangyao (Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences)
Zou, Jun (Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences)
Hao, Lijuan (Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences)
Publication Information
Nuclear Engineering and Technology / v.51, no.7, 2019 , pp. 1715-1720 More about this Journal
Abstract
Jozef Stefan Institute (JSI), TRIGA Mark II reactor employs the homogeneous mixture of uranium and zirconium hydride fuel type. Since its upgrade, a series of fresh fuel steady state experimental benchmarks have been conducted. The benchmark results have provided data for testing computational neutronics codes which are important for reactor design and safety analysis. In this work, we investigated the JSI TRIGA Mark II reactor neutronics characteristics: the effective multiplication factor and two safety parameters, namely the control rod worth and the fuel temperature reactivity coefficient using SuperMC. The modeling and real-time cross section generation methods of SuperMC were evaluated in the investigation. The calculation analysis indicated the following: the effective multiplication factor was influenced by the different cross section data libraries; the control rod worth evaluation was better with Monte Carlo codes; the experimental fuel temperature reactivity coefficient was smaller than calculated results due to change in water temperature. All the results were in good agreement with the experimental values. Hence, SuperMC could be used for the designing and benchmarking of other TRIGA Mark II reactors.
Keywords
TRIGA Mark II; Effective multiplication factor; Control rod worth; Fuel temperature reactivity coefficient; SuperMC;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Wu, Z. Chen, L. Hu, M. Jin, Y. Li, J. Jiang, J. Yu, C. Alejaldre, E. Stevens, K. Kim, Identification of safety gaps for fusion demonstration reactors, Nature Energy 1 (2016) 16154.   DOI
2 Y. Wu, Design and R&D progress of China lead-based reactor for ADS research facility, Engineering 2 (2016) 124-131.   DOI
3 Y. Wu, CAD-based interface programs for fusion neutron transport simulation, Fusion Eng. Des. 84 (2009) 1987-1992.   DOI
4 Y. Wu, Development of high intensity DeT fusion neutron generator HINEG, Int. J. Energy Res. 42 (2018) 68-72.   DOI
5 Q. Huang, C. Li, Y. Li, M. Chen, M. Zhang, L. Peng, Z. Zhu, Y. Song, S. Gao, Progress in development of China Low Activation Martensitic steel for fusion application, J. Nucl. Mater. 367 (2007) 142-146.   DOI
6 Y. Wu, Design status and development strategy of China liquid lithiumelead blankets and related material technology, J. Nucl. Mater. 367 (2007) 1410-1415.   DOI
7 Q. Huang, N. Baluc, Y. Dai, S. Jitsukawa, A. Kimura, J. Konys, R.J. Kurtz, R. Lindau, T. Muroga, G.R. Odette, Recent progress of R&D activities on reduced activation ferritic/martensitic steels, J. Nucl. Mater. (2013) 442.
8 Q. Huang, Status and improvement of CLAM for nuclear application, Nucl. Fusion 57 (2017), 086042.   DOI
9 Q. Gan, B. Wu, S. Yu, J. Song, Y. Wang, CAD-based hierarchical geometry conversion method for modeling of fission reactor cores, Ann. Nucl. Energy 94 (2016) 369-375.   DOI
10 L. Snoj, A. Trkov, M. Ravnik, G. Zerovnik, Testing of cross section libraries on zirconium benchmarks, Ann. Nucl. Energy 42 (2012) 71-79.   DOI
11 I. Lengar, A. Trkov, M. Kromar, L. Snoj, Digital meter of reactivity for use during zero-power physics tests at the Krsko NPP (Uporaba digitalnega merilnika reaktivnosti pri zagonskih testih na nicelni moci v NE Krsko), J. Energy Technol.-JET 5 (2012) 13-26.
12 T. Zagar, M. Ravnik, A. Trkov, Isothermal Temperature Reactivity Coefficient Measurement in Triga Reactor, 2002.
13 R. Henry, I. Tiselj, L. Snoj, Analysis of JSI TRIGA MARK II reactor physical parameters calculated with TRIPOLI and MCNP, Appl. Radiat. Isot. 97 (2015) 140-148.   DOI
14 D.R. Olander, E. Greenspan, H.D. Garkisch, B. Petrovic, Uraniumezirconium hydride fuel properties, Nucl. Eng. Des. 239 (2009) 1406-1424.   DOI
15 I. Mele, M. Ravnik, A. Trkov, TRIGA Mark II benchmark experiment, Part I: steady-state operation, Nucl. Technol. 105 (1994) 37-51.   DOI
16 I. Mele, M. Ravnik, A. Trkov, TRIGA Mark II benchmark experiment; Part II: pulse operation, Nucl. Technol. 105 (1994) 52-58.   DOI
17 R. Jeraj, M. Ravnik, TRIGA Mark II Benchmark Critical Experiment, International Handbook of Evaluated Critical Safety Benchmark Experiments," IEU-COMPTHERM-003, Organization for Economic Cooperation and Development0Nuclear Energy Agency Data Bank, 1999.
18 R. Jeraj, B. Glumac, M. Maucec, Monte Carlo simulation of the TRIGA Mark II benchmark experiment, Nucl. Technol. 120 (1997) 179-187.   DOI
19 M. Tombakoglu, Y. Cecen, Control Rod Worth Evaluation of TRIGA Mark II Reactor, 2001.
20 M. Ravnik, R. Jeraj, Research reactor benchmarks, Nucl. Sci. Eng. 145 (2003) 145-152.   DOI
21 D. Calic, G. Zerovnik, A. Trkov, L. Snoj, Validation of the Serpent 2 code on TRIGA Mark II benchmark experiments, Appl. Radiat. Isot. 107 (2016) 165-170.   DOI
22 H. Rehman, S. Ahmad, Neutronics analysis of TRIGA Mark II research reactor, Nucl. Eng. Technol. 50 (2017) 35-42.   DOI
23 Y. Wu, Conceptual design of the China fusion power plant FDS-II, Fusion Eng. Des. 83 (2008) 1683-1689.   DOI
24 Y. Wu, J. Song, H. Zheng, G. Sun, L. Hao, P. Long, L. Hu, CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC, Ann. Nucl. Energy 82 (2015) 161-168.   DOI
25 X. MCNP, Monte Carlo Team, MCNP da General Monte Carlo N-Particle Transport Code, 2005. Version, 5.
26 Y. Wu, Multifunctional Neutronics Calculation Methodology and Program for Nuclear Design and Radiation Safety Evaluation, Fusion Science & Technology, 2018, pp. 1-9.
27 Y. Wu, Y. Bai, Y. Song, Q. Huang, Z. Zhao, L. Hu, Development strategy and conceptual design of China lead-based research reactor, Ann. Nucl. Energy 87 (2016) 511-516.   DOI
28 Y. Wu, J. Jiang, M.Y. Wang, M. Jin, F. Team, A fusion-driven subcritical system concept based on viable technologies, Nucl. Fusion 51 (2011) 103036.   DOI