• Title/Summary/Keyword: laboratory analysis

Search Result 10,043, Processing Time 0.034 seconds

Early-life exposure to endocrine disrupting chemicals associates with childhood obesity

  • Yang, Chunxue;Lee, Hin Kiu;Kong, Alice Pik Shan;Lim, Lee Ling;Cai, Zongwei;Chung, Arthur C.K.
    • Annals of Pediatric Endocrinology and Metabolism
    • /
    • v.23 no.4
    • /
    • pp.182-195
    • /
    • 2018
  • Increasing prevalence of childhood obesity poses threats to the global health burden. Because this rising prevalence cannot be fully explained by traditional risk factors such as unhealthy diet and physical inactivity, early-life exposure to endocrine disrupting chemicals (EDCs) is recognized as emerging novel risk factors for childhood obesity. EDCs can disrupt the hormone-mediated metabolic pathways, affect children's growth and mediate the development of childhood obesity. Many organic pollutants are recently classified to be EDCs. In this review, we summarized the epidemiological and laboratory evidence related to EDCs and childhood obesity, and discussed the possible mechanisms underpinning childhood obesity and early-life exposure to non-persistent organic pollutants (phthalates, bisphenol A, triclosan) and persistent organic pollutants (dichlorodip henyltrichloroethane, polychlorinated biphenyls, polybrominated diphenyl ethers, per- and polyfluoroalkyl substances). Understanding the relationship between EDCs and childhood obesity helps to raise public awareness and formulate public health policy to protect the youth from exposure to the harmful effects of EDCs.

Overview of Cytogenetic Technologies (세포유전학 기술에 관한 고찰)

  • Kang, Ji-Un
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.375-381
    • /
    • 2018
  • Cytogenetic analysis plays an important role in examinations of a variety of human disorders. Over the years, cytogenetic analysis has evolved to a great extent and become a part of routine laboratory testing; the analysis provides significant diagnostic and prognostic results for human diseases. Microarray in conjunction with molecular cytogenetics and conventional chromosome analysis has transformed the outcomes of clinical cytogenetics. The advantages of microarray technologies have become obvious to the medical and laboratory community involved in genetic diagnosis, resulting in greatly improved visualization and validation capabilities. This article reviews how the field is moving away from conventional cytogenetics towards molecular approaches for the identification of pathogenic genomic imbalances and discusses practical considerations for the routine implementation of these technologies in genetic diagnosis.

Assessment of new 2D and quasi-3D nonlocal theories for free vibration analysis of size-dependent functionally graded (FG) nanoplates

  • Bendaho, Boudjema;Belabed, Zakaria;Bourada, Mohamed;Benatta, Mohamed Atif;Bourada, Fouad;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.277-292
    • /
    • 2019
  • In this present paper, a new two dimensional (2D) and quasi three dimensional (quasi-3D) nonlocal shear deformation theories are formulated for free vibration analysis of size-dependent functionally graded (FG) nanoplates. The developed theories is based on new description of displacement field which includes undetermined integral terms, the issues in using this new proposition are to reduce the number of unknowns and governing equations and exploring the effects of both thickness stretching and size-dependency on free vibration analysis of functionally graded (FG) nanoplates. The nonlocal elasticity theory of Eringen is adopted to study the size effects of FG nanoplates. Governing equations are derived from Hamilton's principle. By using Navier's method, analytical solutions for free vibration analysis are obtained through the results of eigenvalue problem. Several numerical examples are presented and compared with those predicted by other theories, to demonstrate the accuracy and efficiency of developed theories and to investigate the size effects on predicting fundamental frequencies of size-dependent functionally graded (FG) nanoplates.

Burmese Sentiment Analysis Based on Transfer Learning

  • Mao, Cunli;Man, Zhibo;Yu, Zhengtao;Wu, Xia;Liang, Haoyuan
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.535-548
    • /
    • 2022
  • Using a rich resource language to classify sentiments in a language with few resources is a popular subject of research in natural language processing. Burmese is a low-resource language. In light of the scarcity of labeled training data for sentiment classification in Burmese, in this study, we propose a method of transfer learning for sentiment analysis of a language that uses the feature transfer technique on sentiments in English. This method generates a cross-language word-embedding representation of Burmese vocabulary to map Burmese text to the semantic space of English text. A model to classify sentiments in English is then pre-trained using a convolutional neural network and an attention mechanism, where the network shares the model for sentiment analysis of English. The parameters of the network layer are used to learn the cross-language features of the sentiments, which are then transferred to the model to classify sentiments in Burmese. Finally, the model was tuned using the labeled Burmese data. The results of the experiments show that the proposed method can significantly improve the classification of sentiments in Burmese compared to a model trained using only a Burmese corpus.

Tissue Microarrays in Biomedical Research

  • Chung, Joon-Yong;Kim, Nari;Joo, Hyun;Youm, Jae-Boum;Park, Won-Sun;Lee, Sang-Kyoung;Warda, Mohamad;Han, Jin
    • Bioinformatics and Biosystems
    • /
    • v.1 no.1
    • /
    • pp.28-37
    • /
    • 2006
  • Recent studies in molecular biology and proteomics have identified a significant number of novel diagnostic, prognostic, and therapeutic disease markers. However, validation of these markers in clinical specimens with traditional histopathological techniques involves low throughput and is time consuming and labor intensive. Tissue microarrays (TMAs) offer a means of combining tens to hundreds of specimens of tissue onto a single slide for simultaneous analysis. This capability is particularly pertinent in the field of cancer for target verification of data obtained from cDNA micro arrays and protein expression profiling of tissues, as well as in epidemiology-based investigations using histochemical/immunohistochemical staining or in situ hybridization. In combination with automated image analysis, TMA technology can be used in the global cellular network analysis of tissues. In particular, this potential has generated much excitement in cardiovascular disease research. The following review discusses recent advances in the construction and application of TMAs and the opportunity for developing novel, highly sensitive diagnostic tools for the early detection of cardiovascular disease.

  • PDF

Potential Vaccine Targets against Rabbit Coccidiosis by Immunoproteomic Analysis

  • Song, Hongyan;Dong, Ronglian;Qiu, Baofeng;Jing, Jin;Zhu, Shunxing;Liu, Chun;Jiang, Yingmei;Wu, Liucheng;Wang, Shengcun;Miao, Jin;Shao, Yixiang
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • The aim of this study was to identify antigens for a vaccine or drug target to control rabbit coccidiosis. A combination of 2-dimensional electrophoresis, immunoblotting, and mass spectrometric analysis were used to identify novel antigens from the sporozoites of Eimeria stiedae. Protein spots were recognized by the sera of New Zealand rabbits infected artificially with E. stiedae. The proteins were characterized by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS) analysis in combination with bioinformatics. Approximately 868 protein spots were detected by silver-staining, and a total of 41 immunoreactive protein spots were recognized by anti-E. stiedae sera. Finally, 23 protein spots were successfully identified. The proteins such as heat shock protein 70 and aspartyl protease may have potential as immunodiagnostic or vaccine antigens. The immunoreactive proteins were found to possess a wide range of biological functions. This study is the first to report the proteins recognized by sera of infected rabbits with E. stiedae, which might be helpful in identifying potential targets for vaccine development to control rabbit coccidiosis.

A Study on the Analysis of Accident Cases in Laboratories (실험실의 사고사례 분석에 관한 연구)

  • Lee, Keun-Won;Lee, Jung-Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.21-27
    • /
    • 2012
  • The loss of life and property due to accidents in the research facilities or the laboratories of the university occurs steadily and the necessity of laboratory accident prevention is proposed. Above all, the main work to laboratory accident prevention is a systematic analysis of laboratories accidents. Analyzing reports or researches on industrial accidents in Korea had been carried out but these researches or reports did not based on laboratory accidents analysis. To the establishment of the accident prevention countermeasure in laboratory, a questionnaire sheet has been developed in this study. The questionnaires to survey the accident cases were gathered by electronic mail and visit survey from the laboratories and universities. The data of accident cases from the questionnaires was analyzed and discussed on accident distribution by season, the type of accident classification, the type of occurrence, the objects that caused the accident and laboratory accident by the damage incurred etc.. These results of this study can be used as basic data to the safety security and laboratory accident prevention of the laboratory worker.

Comparative Evaluation of Steam Gasification Reactivity of Indonesian Low Rank Coals (인도네시아 저등급 석탄의 스팀 가스화 반응성 비교 평가)

  • KIM, SOOHYUN;VICTOR, PAUL;YOO, JIHO;LEE, SIHYUN;RHIM, YOUNGJOON;LIM, JEONGHWAN;KIM, SANGDO;CHUN, DONGHYUK;CHOI, HOKYUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.693-701
    • /
    • 2016
  • Steam gasification of low rank coals is possible at relatively low temperature and low pressure, and thus shows higher efficiency compared to high rank coals. In this study, the gasification reactivity of four different Indonesian low rank coals (Samhwa, Eco, Roto, Kideco-L) was evaluated in $T=700-800^{\circ}C$. The low rank coals containing $53.8{\pm}3.4$ wt% volatile matter in proximate analysis and $71.6{\pm}1.2$ wt% carbon in ultimate analysis showed comparable gasification reactivity. In addition, $K_2CO_3$ catalyst rapidly accelerated the reaction rate at $700^{\circ}C$, and all of the coals were converted over 90% within 1 hour. The XRD analysis showed no significant difference in carbonization between the coals, and the FT-IR spectrum showed similar functional groups except for differences due to moisture and minerals. TGA results in pyrolysis ($N_2$) and $CO_2$ gasification atmosphere showed very similar behavior up to $800^{\circ}C$ regardless of the coal species, which is consistent with the steam gasification results. This confirms that the indirect evaluation of the reactivity can be made by the above instrumental analyses.

Three-Dimensional Analysis of the Collapse of a Fatty Acid at Various Compression Rates using In Situ Imaging Ellipsometry

  • Hwang, Soon Yong;Kim, Tae Jung;Byun, Jun Seok;Park, Han Gyeol;Choi, Junho;Kang, Yu Ri;Park, Jae Chan;Kim, Young Dong
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.350-358
    • /
    • 2014
  • The collapse of Langmuir monolayers of arachidic acid (AA) on water at various rates of molecular area compression has been investigated in situ by imaging ellipsometry (IE). The thickness of the collapsed AA molecules, which are inherently inhomogeneous, was determined by IE with a spatial resolution of a few microns. For the analysis, we determined the dielectric function of AA monolayers from 380 to 1690 nm by conventional spectroscopic ellipsometry. Compression rates ranged from 0.23 to $0.94{\AA}^2/min$. A change of multilayer domains was observed in the in situ IE images. Lower compression rates resulted in more uniform collapsed films. Our experimental results correspond with previous theoretical simulations.

The evolution of the Human Systems and Simulation Laboratory in nuclear power research

  • Anna Hall;Jeffrey C. Joe;Tina M. Miyake;Ronald L. Boring
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.801-813
    • /
    • 2023
  • The events at Three Mile Island in the United States brought about fundamental changes in the ways that simulation would be used in nuclear operations. The need for research simulators was identified to scientifically study human-centered risk and make recommendations for process control system designs. This paper documents the human factors research conducted at the Human Systems and Simulation Laboratory (HSSL) since its inception in 2010 at Idaho National Laboratory. The facility's primary purposes are to provide support to utilities for system upgrades and to validate modernized control room concepts. In the last decade, however, as nuclear industry needs have evolved, so too have the purposes of the HSSL. Thus, beyond control room modernization, human factors researchers have evaluated the security of nuclear infrastructure from cyber adversaries and evaluated human-in-the-loop simulations for joint operations with an integrated hydrogen generation plant. Lastly, our review presents research using human reliability analysis techniques with data collected from HSSL-based studies and concludes with potential future directions for the HSSL, including severe accident management and advanced control room technologies.