DOI QR코드

DOI QR Code

Overview of Cytogenetic Technologies

세포유전학 기술에 관한 고찰

  • Kang, Ji-Un (Department of Biomedical Laboratory Science, Korea Nazarene University)
  • 강지언 (나사렛대학교 임상병리학과)
  • Received : 2018.11.09
  • Accepted : 2018.11.28
  • Published : 2018.12.31

Abstract

Cytogenetic analysis plays an important role in examinations of a variety of human disorders. Over the years, cytogenetic analysis has evolved to a great extent and become a part of routine laboratory testing; the analysis provides significant diagnostic and prognostic results for human diseases. Microarray in conjunction with molecular cytogenetics and conventional chromosome analysis has transformed the outcomes of clinical cytogenetics. The advantages of microarray technologies have become obvious to the medical and laboratory community involved in genetic diagnosis, resulting in greatly improved visualization and validation capabilities. This article reviews how the field is moving away from conventional cytogenetics towards molecular approaches for the identification of pathogenic genomic imbalances and discusses practical considerations for the routine implementation of these technologies in genetic diagnosis.

세포 유전학적 분석은 인간에서의 다양한 종류의 질환을 연구하고 진단하는데 매우 유용하게 사용되고 있다. 지난 수년 동안 세포 유전학적 분석을 통해 매우 의미 있는 결과를 얻을 수 있었으며, 현재 임상검사실에서 일반적인 검사로 확대되어 질병을 진단하고 결과를 평가하는데 매우 유용하게 사용 되고 있다. Microarray는 분자 세포 유전학적인 방법과 기존의 세포유전학적 방법이 융합된 검사방법으로 기존 검사 방법의 단점을 보완하여 유전 관련 질환을 진단하는데 매우 유용하게 사용되고 있다. 따라서 본 논문은 유전질환 진단에 있어 기존의 일반적인 세포유전학적 방법에서 마이크로어레이를 통한 분자세포유전학적 방법으로 어떻게 전환되어 왔는지, 유전 진단을 하는데 앞으로 이 검사방법들이 얼마나 의미 있게 사용될 것인지에 관하여 고찰하였다.

Keywords

References

  1. Li M, Pinkel D. Clinical cytogenetics and molecular cytogenetics. J Zhejiang Univ Sci B. 2006;7:162-163. https://doi.org/10.1631/jzus.2006.B0162.
  2. Speicher MR, Carter NP. The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet. 2005;6:782-792. https://doi.org/10.1038/nrg1692.
  3. Kang JU, Koo SH, Kwon KC, Park JW, Kim JM. Identification of novel candidate target genes, including EPHB3, MASP1 and SST at 3q26.2-q29 in squamous cell carcinoma of the lung. BMC Cancer. 2009;9:237. https://doi.org/10.1186/1471-2407-9-237.
  4. Kriegsmann J, Kriegsmann M, Kriegsmann K, Longuespee R, Deininger SO, Casadonte R. MALDI imaging for proteomic painting of heterogeneous tissue structures. Proteomics Clin Appl. 2018:e1800045 https://doi.org/10.1002/prca.201800045.
  5. Ebersole JL, Kirakodu S, Novak MJ, Orraca L, Stormberg AJ, Gonzalez-Martinez J, et al. Comparative analysis of expression of microbial sensing molecules in mucosal tissues with periodontal disease. Immunobiology. 2018;pii:S0171-2985(18)30197-9. https://doi.org/10.1016/j.imbio.2018.11.007.
  6. Kang JU, Koo SH, Kwon KC, Park JW. Frequent silence of chromosome 9p, homozygous DOCK8, DMRT1 and DMRT3 deletion at 9p24.3 in squamous cell carcinoma of the lung. Int J Oncol. 2010;37:327-335.
  7. Bacovsky V, Hobza R, Vyskot B. Technical review: cytogenetic tools for studying mitotic chromosomes. Methods Mol Biol. 2018;1675:509-535. https://doi.org/10.1007/978-1-4939-7318-7_30.
  8. Ma T, Huang C, Ni Y, Yang Y, Li J. ATP citrate lyase and LncRNA NONMMUT010685 play crucial role in nonalcoholic fatty liver disease based on analysis of microarray data. Cell Physiol Biochem. 2018;51:871-885. https://doi.org/10.1159/000495384.
  9. Kang JU, Koo SH. Evolving applications of microarray technology in postnatal diagnosis (review). Int J Mol Med. 2012;30:223-228. https://doi.org/10.3892/ijmm.2012.988.
  10. Kang JU, Koo SH. Clinical implementation of chromosomal microarray technology in prenatal diagnosis (review). Mol Med Rep. 2012;6:1219-1222. https://doi.org/10.3892/mmr.2012.1116.
  11. Nowakowska B, Bocian E. Molecular cytogenetic techniques and their application in clinical diagnosis. Med Wieku Rozwoj. 2004;8:7-24.
  12. George P, Wilhelm J, Phillip B. 3st ed. Molecular Diagnostics;2016. p249-267.
  13. Simons A, Sikkema-Raddatz B, de Leeuw N, Konrad NC, Hastings RJ, Schoumans J. Genome-wide arrays in routine diagnostics of hematological malignancies. Hum Mutat. 2012;33:941-948. https://doi.org/10.1002/humu.22057.
  14. Park JH, Woo JH, Shim SH, Yang SJ, Choi YM, Yang KS, et al. Application of a target array comparative genomic hybridization to prenatal diagnosis. BMC Med Genet. 2010;11:102. https://doi.org/10.1186/1471-2350-11-102.
  15. Dave BJ, Sanger WG. Role of cytogenetics and molecular cytogenetics in the diagnosis of genetic imbalances. Semin Pediatr Neurol. 2007;14:2-6. https://doi.org/10.1016/j.spen.2006.11.003.
  16. Vermeesch JR, Fiegler H, de Leeuw N, Szuhai K, Schoumans J, Ciccone R, et al. Guidelines for molecular karyotyping in constitutional genetic diagnosis. Eur J Hum Genet. 2007;15: 1105-1114. https://doi.org/10.1038/sj.ejhg.5201896.
  17. Wan TS. Cancer cytogenetics: an introduction. Methods Mol Biol. 2017;1541:1-10. https://doi.org/10.1007/978-1-4939-6703-2_1.
  18. Chennamaneni R, Gundeti S, Konatam ML, Bala S, Kumar A, Srinivas L. Impact of cytogenetics on outcomes in pediatric acute lymphoblastic leukemia. South Asian J Cancer. 2018;7:263-266. https://doi.org/10.4103/sajc.sajc_13_18.
  19. Chandran RK, Geetha N, Sakthivel KM, Aswathy CG, Gopinath P, Raj TVA, et al. Genomic amplification of BCR-ABL1 fusion gene and its impact on the disease progression mechanism in patients with chronic myelogenous leukemia. Gene. 2018;686:85-91. https://doi.org/10.1016/j.gene.2018.11.005.
  20. Russo A, Degrassi F. Molecular cytogenetics of the micronucleus:Still surprising. Mutat Res. 2018;836(Pt A):36-40. https://doi.org/10.1016/j.mrgentox.2018.05.011.
  21. Iourov IY, Vorsanova SG, Yurov YB. Recent patents on molecular cytogenetics. Recent Pat DNA Gene Seq. 2008;2:6-15. https://doi.org/10.2174/187221508783406585
  22. Bejjani BA, Shaffer LG. Clinical utility of contemporary molecular cytogenetics. Annu Rev Genomics Hum Genet. 2008;9:71-86. https://doi.org/10.1146/annurev.genom.9.081307.164207
  23. Qiu HR, Miao KR, Wang R, Qiao C, Zhang JF, Zhang SJ, et al. The application of fluorescence in situ hybridization in detecting chronic myeloid leukemia. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2009;26:207-210. https://doi.org/10.3760/cma.j.issn.1003-9406.2009.02.020.
  24. Li MM, Andersson HC. Clinical application of microarray-based molecular cytogenetics: an emerging new era of genomic medicine. J Pediatr. 2009;155:311-317. https://doi.org/10.1016/j.jpeds.2009.04.001.
  25. Shaffer LG, Bejjani BA. Medical applications of array CGH and the transformation of clinical cytogenetics. Cytogenet Genome Res. 2006;115:303-309. https://doi.org/10.1159/000095928.
  26. Kang JU, Koo SH, Kwon KC, Park JW, Shin SY, Kim JM, et al. High frequency of genetic alterations in non-small cell lung cancer detected by multi-target fluorescence in situ hybridization. J Korean Med Sci. 2007;22:S47-S51. https://doi.org/10.3346/jkms.2007.22.S.S47.
  27. Mohamed AM, El-Bassyouni HT, El-Gerzawy AM, Hammad SA, Helmy NA, Kamel AK, et al. Cytogenomic characterization of 1q43q44 deletion associated with 4q32.1q35.2 duplication and phenotype correlation. Mol Cytogenet. 2018;11:57. https://doi.org/10.1186/s13039-018-0406-0.
  28. Chandran RK, Geetha N, Sakthivel KM, Aswathy CG, Gopinath P, Raj TVA, et al. Genomic amplification of BCR-ABL1 fusion gene and its impact on the disease progression mechanism in patients with chronic myelogenous leukemia. Gene. 2018;686:85-91. https://doi.org/10.1016/j.gene.2018.11.005.
  29. Krause FS, Rauch A, Schrott KM, Engehausen DG. Clinical decisions for treatment of different staged bladder cancer based on multitarget fluorescence in situ hybridization assays? World J Urol. 2006;24:418-422. https://doi.org/10.1007/s00345-006-0086-y.
  30. Gullotta F, Biancolella M, Costa E, Colapietro I, Nardone AM, Molinaro P, et al. Prenatal diagnosis of genomic disorders and chromosome abnormalities using array-based comparative genomic hybridization. J Prenat Med. 2007;1:16-22.
  31. Melissa SS, Mirella JM, Ronald JW. Evolving applications of microarray analysis in prenatal diagnosis. Curr Opin Obstet Gynecol. 2011;23:103-108. https://doi.org/10.1097/GCO.0b013e32834457c7.
  32. Gresham D, Dunham MJ, Botstein D. Comparing whole genomes using DNA microarrays. Nat Rev Genet. 2008;9:291-302. https://doi.org/10.1038/nrg2335.
  33. Kang J. Clinical implications of microarray in cancer medicine. International Journal of Cancer Research. 2015;11:150-158. https://doi.org/10.3923/ijcr.2015.150.158.
  34. Wilch ES, Morton CC. Historical and clinical perspectives on chromosomal translocations. Adv Exp Med Biol. 2018;1044:1-14. https://doi.org/10.1007/978-981-13-0593-1_1.
  35. Lin SY, Lee CN, Peng AY, Yuan TJ, Lee DJ, Lin WH, et al. Application of molecular cytogenetic techniques to characterize the aberrant Y chromosome arising de novo in a male fetus with mosaic 45,X and solve the discrepancy between karyotyping, chromosome microarray, and multiplex ligation dependent probe amplification. J Formos Med Assoc. 2018;117:1027-1031. https://doi.org/10.1016/j.jfma.2018.04.011
  36. Herriges JC, Brown S, Longhurst M, Ozmore J, Moeschler JB, Janze A, et al. Identification of two 14q32 deletions involving DICER1 associated with the development of DICER1-related tumors. Eur J Med Genet. 2018;pii:S1769-7212(17)30841-8. https://doi.org/10.1016/j.ejmg.2018.04.011.
  37. Pinto IP, Minasi LB, Steckelberg R, da Silva CC, da Cruz AD. Mosaic tetrasomy of 9p24.3q21.11 postnatally identified in an infant born with multiple congenital malformations: a case report. BMC Pediatr. 2018;18:298. https://doi.org/10.1186/s12887-018-1275-8.
  38. Rego de Paula Junior M, Nonino A, Minuncio Nascimento J, Bonadio RS, Pic-Taylor A, de Oliveira SF, et al. High frequency of copy-neutral loss of heterozygosity in patients with myelofibrosis. Cytogenet Genome Res. 2018;154:62-70. https://doi.org/10.1159/000487627.
  39. Oostlander AE, Meijer GA, Ylstra B. Microarray-based comparative genomic hybridization and its applications in human genetics. Clin Genet. 2004;66:488-495. https://doi.org/10.1111/j.1399-0004.2004.00322.x.
  40. de Vries BB, Pfundt R, Leisink M, Koolen DA, Vissers LE, Janssen IM, et al. Diagnostic genome profiling in mental retardation. Am J Hum Genet. 2005;77:606-616. https://doi.org/10.1086/491719.
  41. Vissers LE, de Vries BB, Osoegawa K, Janssen IM, Feuth T, Choy CO, et al. Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities. Am J Hum Genet. 2003;73:1261-1270. https://doi.org/10.1086/379977.
  42. Sagoo GS, Butterworth AS, Sanderson S, Shaw-Smith C, Higgins JP, Burton H, et al. Array CGH in patients with learning disability (mental retardation) and congenital anomalies: updated systematic review and metaanalysis of 19 studies and 13,926 subjects. Genet. 2009;11:139-146. https://doi.org/10.1097/GIM.0b013e318194ee8f.
  43. Hochstenbach R, van Binsbergen E, Engelen J, Nieuwint A, Polstra A, Poddighe P, et al. Array analysis and karyotyping:workflow consequences based on a retrospective study of 36,325 patients with idiopathic developmental delay in the Netherlands. Eur J Med Genet. 2009;52:161-169. https://doi.org/10.1016/j.ejmg.2009.03.015.
  44. Miller D T, Adam M P, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86: 749-764. https://doi.org/10.1016/j.ajhg.2010.04.006.
  45. Peng R, Xie HN, Zheng J, Zhou Y, Lin MF. Fetal right aortic arch:associated anomalies, genetic anomalies with chromosomal microarray analysis, and postnatal outcome. Prenat Diagn. 2017;37:329-335. https://doi.org/10.1002/pd.5015.
  46. Manning M, Hudgins L. Professional Practice and Guidelines Committee. Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet Med. 2010;12:742-745. https://doi.org/10.1097/GIM.0b013e3181f8baad.
  47. Moeschler J B, Shevell M, Committee on Genetics. Comprehensive evaluation of the child with intellectual disability or global developmental delays. Pediatrics. 2014;134:903-918. https://doi.org/10.1542/peds.2014-1839.
  48. Lichtenbelt KD, Knoers NV, Schuring-Blom GH. From karyotyping to array-CGH in prenatal diagnosis. Cytogenet Genome Res. 2011;135:241-250. https://doi.org/10.1159/000334065.
  49. Shaffer LG, Coppinger J, Alliman S, Torchia BA, Theisen A, Ballif BC, et al. Comparison of microarray-based detection rates for cytogenetic abnormalities in prenatal and neonatal specimens. Prenat Diagn. 2008;28:789-795. https://doi.org/10.1002/pd.2053.
  50. Evangelidou P, Sismani C, Ioannides M, Christodoulou C, Koumbaris G, Kallikas I, et al. Clinical application of whole-genome array CGH during prenatal diagnosis: Study of 25 selected pregnancies with abnormal ultrasound findings or apparently balanced structural aberrations. Mol Cytogenet. 2010;3:24. https://doi.org/10.1186/1755-8166-3-24.
  51. D'Amours G, Kibar Z, Mathonnet G, Fetni R, Tihy F, Desilets V, et al. Whole-genome array CGH identifies pathogenic copy number variations in fetuses with major malformations and a normal karyotype. Clin Genet. 2012;81:128-141. https://doi.org/10.1111/j.1399-0004.2011.01687.x.
  52. Hillman SC, Pretlove S, Coomarasamy A, McMullan DJ, Davison EV, Maher ER, et al. Additional information from array comparative genomic hybridization technology over conventional karyotyping in prenatal diagnosis: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2011;37:6-14. https://doi.org/10.1002/uog.7754.

Cited by

  1. The Promise of Whole-exome Sequencing for Prenatal Genetic Diagnosis vol.17, pp.1, 2020, https://doi.org/10.2174/1875692117666191106105918
  2. The utility of fluorescence in situ hybridization testing in patients clinically suspected of myelodysplastic syndrome or myelodysplastic syndrome/myeloproliferative neoplasm overlap is limited in the vol.42, pp.6, 2018, https://doi.org/10.1111/ijlh.13322
  3. Medical Implementation of Microarray Technology vol.52, pp.4, 2020, https://doi.org/10.15324/kjcls.2020.52.4.310