• 제목/요약/키워드: label-free detection

검색결과 79건 처리시간 0.032초

Label/Quencher-Free Detection of Exon Deletion Mutation in Epidermal Growth Factor Receptor Gene Using G-Quadruplex-Inducing DNA Probe

  • Kim, Hyo Ryoung;Lee, Il Joon;Kim, Dong-Eun
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권1호
    • /
    • pp.72-76
    • /
    • 2017
  • Detection of exon 19 deletion mutation in the epidermal growth factor receptor (EGFR) gene, which results in increased and sustained phosphorylation of EGFR, is important for diagnosis and treatment guidelines in non-small-cell lung cancer. Here, we have developed a simple and convenient detection system using the interaction between G-quadruplex and fluorophore thioflavin T (ThT) for discriminating EGFR exon 19 deletion mutant DNA from wild type without a label and quencher. In the presence of exon 19 deletion mutant DNA, the probe DNAs annealed to the target sequences were transformed into G-quadruplex structure. Subsequent intercalation of ThT into the G-quadruplex resulted in a light-up fluorescence signal, which reflects the amount of mutant DNA. Due to stark differences in fluorescence intensity between mutant and wild-type DNA, we suggest that the induced G-quadruplex structure in the probe DNA can report the presence of cancer-causing deletion mutant DNAs with high sensitivity.

Microcantilever biosensor: sensing platform, surface characterization and multiscale modeling

  • Chen, Chuin-Shan;Kuan, Shu;Chang, Tzu-Hsuan;Chou, Chia-Ching;Chang, Shu-Wei;Huang, Long-Sun
    • Smart Structures and Systems
    • /
    • 제8권1호
    • /
    • pp.17-37
    • /
    • 2011
  • The microcantilever (MCL) sensor is one of the most promising platforms for next-generation label-free biosensing applications. It outperforms conventional label-free detection methods in terms of portability and parallelization. In this paper, an overview of recent advances in our understanding of the coupling between biomolecular interactions and MCL responses is given. A dual compact optical MCL sensing platform was built to enable biosensing experiments both in gas-phase environments and in solutions. The thermal bimorph effect was found to be an effective nanomanipulator for the MCL platform calibration. The study of the alkanethiol self-assembly monolayer (SAM) chain length effect revealed that 1-octanethiol ($C_8H_{17}SH$) induced a larger deflection than that from 1-dodecanethiol ($C_{12}H_{25}SH$) in solutions. Using the clinically relevant biomarker C-reactive protein (CRP), we revealed that the analytical sensitivity of the MCL reached a diagnostic level of $1{\sim}500{\mu}g/ml$ within a 7% coefficient of variation. Using grazing incident x-ray diffractometer (GIXRD) analysis, we found that the gold surface was dominated by the (111) crystalline plane. Moreover, using X-ray photoelectron spectroscopy (XPS) analysis, we confirmed that the Au-S covalent bonds occurred in SAM adsorption whereas CRP molecular bindings occurred in protein analysis. First principles density functional theory (DFT) simulations were also used to examine biomolecular adsorption mechanisms. Multiscale modeling was then developed to connect the interactions at the molecular level with the MCL mechanical response. The alkanethiol SAM chain length effect in air was successfully predicted using the multiscale scheme.

Multi Label Deep Learning classification approach for False Data Injection Attacks in Smart Grid

  • Prasanna Srinivasan, V;Balasubadra, K;Saravanan, K;Arjun, V.S;Malarkodi, S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.2168-2187
    • /
    • 2021
  • The smart grid replaces the traditional power structure with information inventiveness that contributes to a new physical structure. In such a field, malicious information injection can potentially lead to extreme results. Incorrect, FDI attacks will never be identified by typical residual techniques for false data identification. Most of the work on the detection of FDI attacks is based on the linearized power system model DC and does not detect attacks from the AC model. Also, the overwhelming majority of current FDIA recognition approaches focus on FDIA, whilst significant injection location data cannot be achieved. Building on the continuous developments in deep learning, we propose a Deep Learning based Locational Detection technique to continuously recognize the specific areas of FDIA. In the development area solver gap happiness is a False Data Detector (FDD) that incorporates a Convolutional Neural Network (CNN). The FDD is established enough to catch the fake information. As a multi-label classifier, the following CNN is utilized to evaluate the irregularity and cooccurrence dependency of power flow calculations due to the possible attacks. There are no earlier statistical assumptions in the architecture proposed, as they are "model-free." It is also "cost-accommodating" since it does not alter the current FDD framework and it is only several microseconds on a household computer during the identification procedure. We have shown that ANN-MLP, SVM-RBF, and CNN can conduct locational detection under different noise and attack circumstances through broad experience in IEEE 14, 30, 57, and 118 bus systems. Moreover, the multi-name classification method used successfully improves the precision of the present identification.

Avidin Induced Silver Aggregation for SERS-based Bioassay

  • Sa, Youngjo;Chen, Lei;Jung, Young Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3681-3685
    • /
    • 2012
  • We developed a simple and effective method for the SERS-based detection of protein-small molecule complexes and label-free proteins using avidin-induced silver aggregation. Upon excitation with light of the appropriate wavelength (633 and 532 nm), the aggregated silver nanoparticles generate a strong electric field that couples with the resonance of the molecules (atto610 and cytochrome c), increasing the characteristic signals of these molecules and resulting in sensitive detection. The detection limit of biotin with the proposed method is as low as 48 ng/mL. The most important aspect of this method is the induction of silver aggregation by a protein (avidin), which makes the silver more biocompatible. This technique is very useful for the detection of protein-small molecule complexes.

압타머 광학 바이오센서 (Aptamer-based optical switch for biosensors)

  • 이주운;조정환;조은정
    • 분석과학
    • /
    • 제27권3호
    • /
    • pp.121-139
    • /
    • 2014
  • In this review, we will discuss aptamer technologies including in vitro selection, signal transduction mechanisms, and designing aptamers and aptazyme for label-free biosensors and catalysts. Dye-displacement, a typical label-less method, is described here which allows avoiding relatively complex labeling steps and extending this application to any aptamers without specific conformational changes, in a more simple, sensitive and cost effective way. We will also describe most recent and advanced technologies of signaling aptamer and aptazyme for the various analytical and clinical applications. Quantum dot biosensor (QDB) is explained in detail covering designing and adaptations for multiplexed protein detection. Application to aptamer array utilizing self-assembled signaling aptamer DNA tile and the novel methods that can directly select smart aptamer or aptazyme experimentally and computationally will also be finally discussed, respectively.

Detection for folding of the thrombin binding aptamer using label-free electrochemical methods

  • Cho, Min-Seon;Kim, Yeon-Wha;Han, Se-Young;Min, Kyung-In;Rahman, Md. Aminur;Shim, Yoon-Bo;Ban, Chang-Ill
    • BMB Reports
    • /
    • 제41권2호
    • /
    • pp.126-131
    • /
    • 2008
  • The folding of aptamer immobilized on an Au electrode was successfully detected using label-free electrochemical methods. A thrombin binding DNA aptamer was used as a model system in the presence of various monovalent cations. Impedance spectra showed that the extent to which monovalent cations assist in folding of aptamer is ordered as $K^+$ > $NH_4^+$ > $Na^+$ > $Cs^+$. Our XPS analysis also showed that $K^+$ and $NH_4^+$ caused a conformational change of the aptamer in which it forms a stable complex with these monovalent ions. Impedance results for the interaction between aptamer and thrombin indicated that thrombin interacts more with folded aptamer than with unfolded aptamer. The EQCM technique provided a quantitative analysis of these results. In particular, the present impedance results showed that thrombin participates a folding of aptamer to some extent, and XPS analysis confirmed that thrombin stabilizes and induces the folding of aptamer.

Surface Mass Imaging Technique for Nano-Surface Analysis

  • Lee, Tae Geol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.113-114
    • /
    • 2013
  • Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging is a powerful technique for producing chemical images of small biomolecules (ex. metabolites, lipids, peptides) "as received" because of its high molecular specificity, high surface sensitivity, and submicron spatial resolution. In addition, matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) imaging is an essential technique for producing chemical images of large biomolecules (ex. genes and proteins). For this talk, we will show that label-free mass imaging technique can be a platform technology for biomedical studies such as early detection/diagnostics, accurate histologic diagnosis, prediction of clinical outcome, stem cell therapy, biosensors, nanomedicine and drug screening [1-7].

  • PDF

Characteristics of Protein G-modified BioFET

  • Sohn, Young-Soo
    • 센서학회지
    • /
    • 제20권4호
    • /
    • pp.226-229
    • /
    • 2011
  • Label-free detection of biomolecular interactions was performed using BioFET(Biologically sensitive Field-Effect Transistor) and SPR(Surface Plasmon Resonance). Qualitative information on the immobilization of an anti-IgG and antibody-antigen interaction was gained using the SPR analysis system. The BioFET was used to explore the pI value of the protein and to monitor biomolecular interactions which caused an effective charge change at the gate surface resulting in a drain current change. The results show that the BioFET can be a useful monitoring tool for biomolecular interactions and is complimentary to the SPR system.