DOI QR코드

DOI QR Code

Avidin Induced Silver Aggregation for SERS-based Bioassay

  • Sa, Youngjo (Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University) ;
  • Chen, Lei (Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University) ;
  • Jung, Young Mee (Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University)
  • Received : 2012.06.26
  • Accepted : 2012.08.14
  • Published : 2012.11.20

Abstract

We developed a simple and effective method for the SERS-based detection of protein-small molecule complexes and label-free proteins using avidin-induced silver aggregation. Upon excitation with light of the appropriate wavelength (633 and 532 nm), the aggregated silver nanoparticles generate a strong electric field that couples with the resonance of the molecules (atto610 and cytochrome c), increasing the characteristic signals of these molecules and resulting in sensitive detection. The detection limit of biotin with the proposed method is as low as 48 ng/mL. The most important aspect of this method is the induction of silver aggregation by a protein (avidin), which makes the silver more biocompatible. This technique is very useful for the detection of protein-small molecule complexes.

Keywords

References

  1. Aroca, R. Surface-Enhanced Vibrational Spectroscopy; John Wiley & Sons, Ltd.: Chichester, 2006.
  2. Kneipp, K.; Moskovits, M.; Kneipp, H. Surface-Enhanced Raman Scattering-Physics and Applications; Springer: Berlin, Heidelberg, 2006.
  3. Stiles, P. L.; Dieringer, F. A.; Shah, N. C.; Van Duyne, R. P. Annu. Rev. Anal. Chem. 2008, 1, 601. https://doi.org/10.1146/annurev.anchem.1.031207.112814
  4. Xu, S. P.; Ji, X. H.; Xu, W. Q.; Li, X. L.; Wang, L. Y.; Bai, Y. B.; Zhao, B.; Ozaki, Y. Analyst 2004, 129, 63. https://doi.org/10.1039/b313094k
  5. Lin, C. C.; Yang, Y. M.; Chen, Y. F.; Yang, T. S.; Chang, H. C. Biosens. Bioelectron. 2008, 24, 178. https://doi.org/10.1016/j.bios.2008.03.035
  6. Han, X. X.; Zhao, B.; Ozaki, Y. Anal. Bioanal. Chem. 2009, 394, 1719. https://doi.org/10.1007/s00216-009-2702-3
  7. Chon, H.; Lee, S.; Son, S. W.; Oh, C. H.; Choo, J. Anal. Chem. 2009, 81, 3029. https://doi.org/10.1021/ac802722c
  8. Wang, G.; Park, H. Y.; Lipert, R. J. Anal. Chem. 2009, 81, 9643. https://doi.org/10.1021/ac901711f
  9. Kiran, M. S.; Itoh, T.; Yoshida, K.; Kawashima, N.; Biju, V.; Ishikawa, M. Anal. Chem. 2010, 82, 1342. https://doi.org/10.1021/ac902364h
  10. Moskovits, M. Rev. Mod. Phys. 1985, 57, 783. https://doi.org/10.1103/RevModPhys.57.783
  11. Tian, Z. Q.; Ren, B. Annu. Rev. Phys. Chem. 2004, 55, 197. https://doi.org/10.1146/annurev.physchem.54.011002.103833
  12. Nie, S. M.; Emory, S. R. Science 1997, 275, 1102. https://doi.org/10.1126/science.275.5303.1102
  13. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Phys. Rev. Lett. 1997, 78, 1667. https://doi.org/10.1103/PhysRevLett.78.1667
  14. Rosi, N. L.; Mirkin, C. A. Chem. Rev. 2005, 105, 1547. https://doi.org/10.1021/cr030067f
  15. Willets, K. A. Anal. Bioanal. Chem. 2009, 394, 85. https://doi.org/10.1007/s00216-009-2682-3
  16. Han, X. X.; Huang, G. G.; Zhao, B.; Ozaki, Y. Anal. Chem. 2009, 81, 3329. https://doi.org/10.1021/ac900395x
  17. Han, X. X.; Chen, L.; Ji, W.; Xie, Y. F.; Zhao, B.; Ozaki, Y. Small 2011, 7, 316. https://doi.org/10.1002/smll.201001936
  18. Wang, Y. L.; Wei, H.; Li, B. L.; Ren, W.; Guo, S. J.; Dong, S. J.; Wang, E. Chem. Commun. 2007, 48, 5220.
  19. Sabatte, G.; Keir, R.; Lawlor, M.; Black, M.; Graham, D.; Smith, W. E. Anal. Chem. 2008, 80, 2351. https://doi.org/10.1021/ac071343j
  20. Han, X. X.; Chen, L.; Guo, J.; Zhao, B.; Ozaki, Y. Anal. Chem. 2010, 82, 4102. https://doi.org/10.1021/ac100202w
  21. Han, X. X.; Xie, Y. F.; Zhao, B.; Ozaki, Y. Anal. Chem. 2010, 82, 4325. https://doi.org/10.1021/ac100596u
  22. Bell, S. E. J.; Sirimuthu, N. M. S. Chem. Soc. Rev. 2008, 37, 1012. https://doi.org/10.1039/b705965p
  23. Bell, S. E. J.; Mackle, J. N.; Sirimuthu, N. M. S. Analyst 2005, 130, 545. https://doi.org/10.1039/b415290e
  24. Lee, P. C.; Meisel, D. J. Phys. Chem. 1982, 86, 3391. https://doi.org/10.1021/j100214a025
  25. Hildebrandt, P.; Stockburger, M. J. Phys. Chem. 1984, 88, 5935. https://doi.org/10.1021/j150668a038
  26. Hildebrandt, P.; Stockburger, M. J. Raman Spectrosc. 1986, 17, 55. https://doi.org/10.1002/jrs.1250170112
  27. Hu, S. Z.; Morris, L. K.; Singh, J. P.; Smith, K. M.; Spiro, T. G. J. Am. Chem. Soc. 1993, 115, 12446. https://doi.org/10.1021/ja00079a028
  28. Eng, L. H.; Schlegel, V.; Wang, D. L.; Neujahr, H. Y.; Stankovich, M. T.; Cotton, T. Langmuir 1996, 12, 3055. https://doi.org/10.1021/la950599u
  29. Dick, L. A.; Haes, A. J.; Van Duyne, R. P. J. Phys. Chem. B 2000, 104, 11752. https://doi.org/10.1021/jp0029717
  30. Johannessen, C.; White, P. C.; Abdali, S. J. Phys. Chem. A 2007, 111, 7771. https://doi.org/10.1021/jp0705267
  31. Chen, L.; Han, X. X.; Yang, J. X.; Zhou, J.; Song, W.; Zhao, B.; Xu, W. Q.; Ozaki, Y. J. Colloid Interface Sci. 2011, 360, 482. https://doi.org/10.1016/j.jcis.2011.04.067

Cited by

  1. Hybrid nanostructures for SERS: materials development and chemical detection vol.17, pp.33, 2015, https://doi.org/10.1039/C5CP01032B
  2. Differential Diagnostics of Bacteria Using the Surface-Enhanced Raman Spectra vol.89, pp.2, 2012, https://doi.org/10.1134/s002626172001004x