• Title/Summary/Keyword: lab-on-a-chip

Search Result 198, Processing Time 0.025 seconds

Development of a Barrier Embedded Chaotic Micromixer (배리어가 포함된 카오스 마이크로 믹서의 개발)

  • 김동성;이석우;권태헌;이승섭
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.63-69
    • /
    • 2004
  • It is of great interest to enhance mixing performance in a microchannel in which the flow is usually characterized as a low Reynolds number (Re) so that good mixing is quite difficult to be achieved in this laminar flow regime. In this regard, we present a new chaotic passive micromixer, named Barrier Embedded Micromixer (BEM), of which the mixing mechanism is based on chaotic flows. In BEM, chaotic flow is induced by periodic perturbation of the velocity field due to periodically inserted barriers along the channel wall while a helical type of flow is obtained by slanted grooves on the bottom surface of the channel in the pressure driven flow. To experimentally compare the mixing performance, a T-microchannel and a microchannel with only slanted grooves were also fabricated. All microchannels were made of PDMS (Polydimethylsiloxane) from SU-8 masters that were fabricated by conventional photolithography. Mixing performance was experimentally characterized with respect to an average mixing intensity by means of color change of phenolphthalein as pH indicator. It was found that mixing efficiency decreases as Re increases for all three micromixers. Experimental results obviously indicate that BEM has better mixing performance than the other two. Chaotic mixing mechanism, suggested in this study, can be easily applied to integrated microfluidic systems , such as Micro-Total-Analysis-System, Lab-on-a-chip and so on.

Virtual ARM Machine for Embedded System Development (임베디드 시스템의 가상 ARM 머신의 개발)

  • Lee, So-Jin;An, Young-Ho;Han, Alex H;Hwang, Young-Si;Chung, Ki-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.1
    • /
    • pp.19-24
    • /
    • 2008
  • To reduce time-to-market, more and more embedded system developers and system-on-chip designers rely on microprocessor-based design methodology. ARM processor has been a major player in this industry over the last 10 years. However, there are many restrictions on developing embedded software using ARM processor in the early design stage. For those who are not familiar with embedded software development environment or who cannot afford to have an expensive embedded hardware equipment, testing their software on a real ARM hardware platform is a challenging job. To overcome such a problem, we have designed VMA (Virtual ARM Machine), which offers easier testing and debugging environment to ARM based embedded system developers. Major benefits that can be achieved by utilizing a virtual ARM platform are (1) reducing development cost, (2) lowering the entrance barrier for embedded system novices, and (3) making it easier to test and debug embedded software designs. Unlike many other purely software-oriented ARM simulators which are independent of real hardware platforms, VMA is specifically targeted on SYS-Lab 5000 ARM hardware platform, (designed by Libertron, Inc.), which means that VMA imitates behaviors of embedded software as if the software is running on the target embedded hardware as closely as possible. This paper will describe how VMA is designed and how VMA can be used to reduce design time and cost.

  • PDF

Development of a low-cost multifunctional wireless impedance sensor node

  • Min, Jiyoung;Park, Seunghee;Yun, Chung-Bang;Song, Byunghun
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.689-709
    • /
    • 2010
  • In this paper, a low cost, low power but multifunctional wireless sensor node is presented for the impedance-based SHM using piezoelectric sensors. Firstly, a miniaturized impedance measuring chip device is utilized for low cost and low power structural excitation/sensing. Then, structural damage detection/sensor self-diagnosis algorithms are embedded on the on-board microcontroller. This sensor node uses the power harvested from the solar energy to measure and analyze the impedance data. Simultaneously it monitors temperature on the structure near the piezoelectric sensor and battery power consumption. The wireless sensor node is based on the TinyOS platform for operation, and users can take MATLAB$^{(R)}$ interface for the control of the sensor node through serial communication. In order to validate the performance of this multifunctional wireless impedance sensor node, a series of experimental studies have been carried out for detecting loose bolts and crack damages on lab-scale steel structural members as well as on real steel bridge and building structures. It has been found that the proposed sensor nodes can be effectively used for local wireless health monitoring of structural components and for constructing a low-cost and multifunctional SHM system as "place and forget" wireless sensors.

Development of a Three-Dimensional Barrier Embedded Kenics Micromixer by Means of a Micro-Stereolithography Technology (마이크로 광 조형기술을 이용한 3차원의 배리어가 포함된 케닉스 마이크로 믹서의 개발)

  • Lee In Hwan;Kwon Tai Hun;Cho Dong-Woo;Kim Dong Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.904-912
    • /
    • 2005
  • The flow in a microchannel is usually characterized as a low Reynolds number (Re) so that good mixing is quite difficult to be achieved. In this regard, we developed a novel chaotic micromixer, named Barrier Embedded Kenics Micromixer (BEKM). In the BEKM, the higher level of chaotic mixing can be achieved by combining two general chaotic mixing mechanisms: (i) splitting/reorientation by helical elements inside the microchannel and (ii) stretching/folding via periodically located barriers on the channel wall. The fully three-dimensional geometry of BEKM was realized by a micro-stereolithography technology, in this study, along with a Kenics micromixer and a circular T-pipe. Mixing performances of three micromixers were experimentally characterized in terms of an average mixing color intensity of phenolphthalein. Experimental results show that BEKM has better mixing performance than other two micromixers. Chaotic mixing mechanism, proposed in this study, could be integrated as a mixing component with Micro-Total-Analysis-System, Lab-on-a-chip and so on.

FEM MMIC Development based on X-Band GaAs for Satellite Terminals of Phase Array Structure (위상배열구조 위성단말용 X대역 GaAs 기반 FEM MMIC 국산화 개발)

  • Younghoon Kim;Sanghun Lee;Byungchul Park;Sungjin Mun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.121-127
    • /
    • 2024
  • In this paper, FEM (Front-End Module) MMIC, a key component for the application of the satellite communication terminal transmission and reception module of the multi-phase array structure, was designed and verified as a single chip by designing the Power Amplifier (PA) and the Low Noise Amplifier (LNA). It was manufactured using the GaAs PP10 (100nm) process, a compound semiconductor process from Win-semiconductors, and the operating frequency band of 7.2-10.5GHz operation, output 1W, and noise index of 1.5dB or less were secured using a dedicated test board. The developed FEM MMIC can be used as a single chip, and the components PA and LNA can also be used as each device. The developed device will be used in various applications of Minsu/Gunsu using the X band and the localization of overseas parts.

Geometric Optimization of a Microchannel for the Improvement of Temperature Gradient Focusing (온도기울기 농축(TGF) 향상을 위한 미세채널 형상 최적화 연구)

  • Han, Tae-Heon;Kim, Sun-Min
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.17-24
    • /
    • 2011
  • Temperature gradient focusing (TGF) of analytes via Joule heating is achieved when electric field is applied along a microchannel of varying width. The effect of varying width of the microchannel for the focusing performance of the device was numerically studied. The governing equations were implemented into a quasi-1D numerical model along a microchannel. The validity of the numerical model was verified by a comparison between numerical and experimental results. The distributions of temperature, velocity, and concentration along a microchannel were predicted by the numerical results. The narrower middle width and wider outside width of the channel having the fixed length contribute to improve the focusing performance of the device. However, too narrow middle width of the channel generates a higher temperature which can cause the problems including sample denaturation and buffer solution boiling. Therefore, the channel geometry should be optimized to prevent these problems. The optimal widths of the microchannel for the improvement on TGF were proposed and this model can be easily applied to lab-on-a-chip (LOC) applications where focusing is required based on its simple design.

Fabrication of PDMS Lens Using Photolithography and Water Droplet Mold (사진식각공정과 물방울 형틀을 이용한 PDMS 렌즈 제작)

  • Kim, Jin Young;Sung, Jungwoo;Cho, Seong J.;Kim, Chulhong;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.352-356
    • /
    • 2013
  • We developed a novel fabrication method of polydimethylsioxane (PDMS) lens, which can easily control the shapes of the lens using soft lithography with common photolithography and water droplet molding. A mold for PDMS lens was prepared by patterning of hydrophobic photoresist on the hydrophilic substrate and dispensing small water droplets onto the predefined hydrophilic patterns. The size of patterns determined the dimension of the lens and the dispensed volume of the water droplet decided the radius of curvature of the PDMS lens independently. The water droplet with photoresist pattern played a robustly fixed mold for lens due to difference in wettability. The radius of curvature could be calculated theoretically because the water droplets could approximate spherical cap on the substrate. Finally, concave and convex PDMS lenses which could reduce or magnify optically were fabricated by curing of PDMS on the prepared mold. The measured radii of the fabricated PDMS lenses were well matched with the estimated values. We believe that our simple and efficient fabrication method can be adopted to PDMS microlens and extended to micro optical device, lab on a chip, and sensor technology.

Nano-Structures on Polymers Evolved by Ion Beam/Plasma

  • Moon, Myoung-Woon;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.76-76
    • /
    • 2012
  • Surface engineering of polymers has a broad array of scientific and technological applications that range from tissue engineering, regenerative medicine, microfluidics and novel lab on chip devices to building mechanical memories, stretchable electronics, and devising tunable surface adhesion for robotics. Recent advancements in the field of nanotechnology have provided robust techniques for controlled surface modification of polymers and creation of structural features on the polymeric surface at submicron scale. We have recently demonstrated techniques for controlled surfaces of soft and relatively hard polymers using ion beam irradiation and plasma treatment, which allows the fabrication of nanoscale surface features such as wrinkles, ripples, holes, and hairs with respect to its polymers. In this talk, we discuss the underlying mechanisms of formation of these structural features. This includes the change in the chemical composition of the surface layer of the polymers due to ion beam irradiation or plasma treatment and the instability and mechanics of the skin-substrate system. Using ion beam or plasma irradiation on polymers, we introduce a simple method for fabrication of one-dimensional, two-dimensional and nested hierarchical structural patterns on polymeric surfaces on various polymers such as polypropylene (PP), polyethylene (PE), poly (methyl methacrylate) PMMA, and polydimethylsiloxane (PDMS).

  • PDF

Programmable Magnetic Actuation of Biomolecule Carriers using NiFe Stepping Stones

  • Lim, Byung-Hwa;Jeong, Il-Gyo;Anandakumar, S.;Kim, K.W.;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.363-367
    • /
    • 2011
  • We have designed, fabricated and demonstrated a novel micro-system for programmable magnetic actuation using magnetic elliptical pathways on Si substrates. Lithographically patterned soft NiFe ellipses are arranged sequentially perpendicular to each other as stepping stones for the transport of magnetic beads. We have measured the magnetization curve of the ellipsoid ($9\;{\mu}m{\times}4\;{\mu}m{\times}0.1\;{\mu}m$) elements with respect to the long and short axes of the ellipse. We found that the magnetization in the long axis direction is larger than that in the short axis direction for an applied field of ${\leq}$ 1,000 Oe, causing a force on carriers that causes them to move from one element to another. We have successfully demonstrated a micro-system for the magnetic actuation of biomolecule carriers of superparamagnetic beads (Dynabead$^{(R)}$ 2.8 ${\mu}m$) by rotating the external magnetic field. This novel concept of magnetic actuation is useful for future integrated lab-on-a-chip systems for biomolecule manipulation, separation and analysis.

A Study on Design of an Effective Micromixer using Horizontal and Vertical Multi-mixing (HVM) Flow Motion (상하좌우 복합유동 유도를 통한 고효율 HVM 마이크로 믹서 설계에 관한 연구)

  • Yoo, Won-Sui;Kim, Sung-Jin;Kang, Seok-Hoon;Kim, Pan-Guen;Park, Sang-Hu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.751-757
    • /
    • 2011
  • Subminiature devices such as Lab-on-a-chip and p-TAS(Micro Total Analysis System) have been intensively studied in biotechnology and chemistry, In many cases, a micromixer was widely used to mix different solutions for synthesizing novel materials. However, in microfluidic system, there is generally a laminar flow under very small Reynolds number so it is difficult to mix each solution perfectly. To settle this problem, we propose a new mixing mechanism which generates a horizontal and vertical multi-mixing (HVM) flow for effective mixing within a short mixing section. We evaluated the proposed mechanism using CFD analysis, and the results showed that the HVM mechanism had a relative high-effectiveness comparing to the existing methods.