Browse > Article
http://dx.doi.org/10.4283/JMAG.2011.16.4.363

Programmable Magnetic Actuation of Biomolecule Carriers using NiFe Stepping Stones  

Lim, Byung-Hwa (Department of Materials Science and Engineering, Chungnam National University)
Jeong, Il-Gyo (Department of Materials Science and Engineering, Chungnam National University)
Anandakumar, S. (Department of Materials Science and Engineering, Chungnam National University)
Kim, K.W. (Department of Materials Science and Engineering, Chungnam National University)
Kim, Cheol-Gi (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Abstract
We have designed, fabricated and demonstrated a novel micro-system for programmable magnetic actuation using magnetic elliptical pathways on Si substrates. Lithographically patterned soft NiFe ellipses are arranged sequentially perpendicular to each other as stepping stones for the transport of magnetic beads. We have measured the magnetization curve of the ellipsoid ($9\;{\mu}m{\times}4\;{\mu}m{\times}0.1\;{\mu}m$) elements with respect to the long and short axes of the ellipse. We found that the magnetization in the long axis direction is larger than that in the short axis direction for an applied field of ${\leq}$ 1,000 Oe, causing a force on carriers that causes them to move from one element to another. We have successfully demonstrated a micro-system for the magnetic actuation of biomolecule carriers of superparamagnetic beads (Dynabead$^{(R)}$ 2.8 ${\mu}m$) by rotating the external magnetic field. This novel concept of magnetic actuation is useful for future integrated lab-on-a-chip systems for biomolecule manipulation, separation and analysis.
Keywords
magnetic pathways; magnetic beads; NiFe ellipse;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 R. Wirix-Speetjens and J. de Boek, IEEE Trans. Magn. 41, 1944 (2004).
2 M. Zborowski, C. B. Fuh, R. Green, L. Sun, and J. J. Chalmers, Anal. Chem. 67, 3702 (1995).   DOI   ScienceOn
3 Q. Ramadan, V. Samper, D. P. Poenar, and C. Yu, Biosens. Bioelectron. 21, 1693 (2006).   DOI   ScienceOn
4 N. Pamme, Lab Chip. 6, 24 (2006).   DOI   ScienceOn
5 S. Anandakumar, V. Sudha Rani, J.-R. Jeong, C. G. Kim, K. W. Kim, and B. Parvatheeswara Rao, J. Appl. Phys. 105, 07B312 (2009).   DOI   ScienceOn
6 http://www.dynalbiotech.com
7 I. Safarik, M. Safarikova, and J. Chormatogr. B: Biomed. Appl. 722, 33 (1999).   DOI   ScienceOn
8 M. A. M. Gijs, Microfluid Nanofluid 1, 22 (2004).
9 R. N. Zare and S. Kim, Annu. Rev. Biomed. Eng. 12, 187 (2010).   DOI   ScienceOn
10 T. Deng, G. M. Whiteside, M. Radhakrishnan, G. Zabow, and M. Prentiss, Appl. Phys. Lett. 78, 1775 (2001).   DOI   ScienceOn
11 A. Rida, V. Fernanadez, and M. A. M. Gijs, Appl. Phys. Lett. 83, 2396 (2003).   DOI   ScienceOn
12 Q. Ramadan, C. Yu, V. Samper, and D. P. Poenar, Appl. Phys. Lett. 88, 032501 (2006).   DOI   ScienceOn
13 E. Mirowski, J. Moreland, A. Zhang, S. E. Russek, and M. J. Donahue, Appl. Phys. Lett. 86, 243901 (2005).   DOI   ScienceOn
14 K. Gunnarsson, P. E. Roy, S. Felton, J. Pihl, P. Svedlindh, S. Berner, H. Lidbaum, and S. Oscarsson, Adv. Mater. 17, 1730 (2005).   DOI   ScienceOn
15 T. Deng, M. Prentiss, and G. M. Whitesides, Appl. Phys. Lett. 80, 461 (2002).   DOI   ScienceOn
16 E. Mirowski, J. Moreland, S. Russek, M. Donahue, and K. Hsieh, J. Magn. Magn. Mater. 311, 401 (2007).   DOI   ScienceOn
17 K. Smistrup, T. Lund-Olesen, M. F. Hansen, and P. T. Tang, J. Appl. Phys. 99, 08P102 (2006).   DOI
18 S. Anandakumar, V. Sudha Rani, Sunjong Oh, B. L. Sinha, M. Takahashi, and C. G. Kim, Biosens. Bioelectron. 26, 1755 (2010).   DOI   ScienceOn