• Title/Summary/Keyword: lab-based science learning

Search Result 60, Processing Time 0.031 seconds

Diagnosis and Visualization of Intracranial Hemorrhage on Computed Tomography Images Using EfficientNet-based Model (전산화 단층 촬영(Computed tomography, CT) 이미지에 대한 EfficientNet 기반 두개내출혈 진단 및 가시화 모델 개발)

  • Youn, Yebin;Kim, Mingeon;Kim, Jiho;Kang, Bongkeun;Kim, Ghootae
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.150-158
    • /
    • 2021
  • Intracranial hemorrhage (ICH) refers to acute bleeding inside the intracranial vault. Not only does this devastating disease record a very high mortality rate, but it can also cause serious chronic impairment of sensory, motor, and cognitive functions. Therefore, a prompt and professional diagnosis of the disease is highly critical. Noninvasive brain imaging data are essential for clinicians to efficiently diagnose the locus of brain lesion, volume of bleeding, and subsequent cortical damage, and to take clinical interventions. In particular, computed tomography (CT) images are used most often for the diagnosis of ICH. In order to diagnose ICH through CT images, not only medical specialists with a sufficient number of diagnosis experiences are required, but even when this condition is met, there are many cases where bleeding cannot be successfully detected due to factors such as low signal ratio and artifacts of the image itself. In addition, discrepancies between interpretations or even misinterpretations might exist causing critical clinical consequences. To resolve these clinical problems, we developed a diagnostic model predicting intracranial bleeding and its subtypes (intraparenchymal, intraventricular, subarachnoid, subdural, and epidural) by applying deep learning algorithms to CT images. We also constructed a visualization tool highlighting important regions in a CT image for predicting ICH. Specifically, 1) 27,758 CT brain images from RSNA were pre-processed to minimize the computational load. 2) Three different CNN-based models (ResNet, EfficientNet-B2, and EfficientNet-B7) were trained based on a training image data set. 3) Diagnosis performance of each of the three models was evaluated based on an independent test image data set: As a result of the model comparison, EfficientNet-B7's performance (classification accuracy = 91%) was a way greater than the other models. 4) Finally, based on the result of EfficientNet-B7, we visualized the lesions of internal bleeding using the Grad-CAM. Our research suggests that artificial intelligence-based diagnostic systems can help diagnose and treat brain diseases resolving various problems in clinical situations.

Advanced controller design for AUV based on adaptive dynamic programming

  • Chen, Tim;Khurram, Safiullahand;Zoungrana, Joelli;Pandey, Lallit;Chen, J.C.Y.
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.233-260
    • /
    • 2020
  • The main purpose to introduce model based controller in proposed control technique is to provide better and fast learning of the floating dynamics by means of fuzzy logic controller and also cancelling effect of nonlinear terms of the system. An iterative adaptive dynamic programming algorithm is proposed to deal with the optimal trajectory-tracking control problems for autonomous underwater vehicle (AUV). The optimal tracking control problem is converted into an optimal regulation problem by system transformation. Then the optimal regulation problem is solved by the policy iteration adaptive dynamic programming algorithm. Finally, simulation example is given to show the performance of the iterative adaptive dynamic programming algorithm.

Development of Prediction Model for Greenhouse Control based on Machine Learning (머신러닝 기반의 온실 제어를 위한 예측모델 개발)

  • Kim, Sang Yeob;Park, Kyoung Sub;Lee, Sang Min;Heo, Byeong Mun;Ryu, Keun Ho
    • Journal of Digital Contents Society
    • /
    • v.19 no.4
    • /
    • pp.749-756
    • /
    • 2018
  • In this study, we developed a prediction model for greenhouse control using machine learning technique. The prediction model was developed using measured data (2016) on greenhouse in the Protected Horticulture Research Institute. In order to improve the predictive performance of model and to ensure the reliability of data, the dimension of the data was reduced by correlation analysis. The dataset were divided into spring, summer, autumn, and winter considering the seasonal characteristics. An artificial neural network, recurrent neural network, and multiple regression model were constructed as a machine leaning based prediction model and evaluated by comparative analysis with real dataset. As a result, ANN showed good performance in selected dataset, while MRM showed good performance in full dataset.

Exploring Pedagogical Potential of UMPC with Small Group Study in Elementary School (u-러닝 도구로서의 UMPC 활용학습에 대한 탐색적 연구 -초등교실에서의 모둠학습을 중심으로-)

  • Yi, Moon-Ho;Kim, Mi-Ryang
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.8
    • /
    • pp.215-225
    • /
    • 2007
  • The portability and immediate communication properties of mobile devices such as UMPC influence the learning processes in interacting with peers, accessing resources and transferring data. This study explores the pedagogical potential of UMPC, being utilized in inquiry-based learning process in elementary school setting. Inquiry-based teaming, offering a powerful option for occasional projects and lab activities, is a style particularly well-suited for out-of-school programs because they have a freer hand to complement, enhance, and expand on the work that children are doing in their K-12 classes. A set of questionnaires measuring the level of interest and class achievement were answered by the students before and after the inquiry-based science class in elementary school. Statistical results show that most of the students prefer UPMC-based class to the traditional class. Some guidelines for effective UPMC-based class are also provided.

Scientifically Gifted Students' Perception of the Learning Support System based on Korea Science Academy Survey (과학영재학교의 학습 지원 체제 유용성에 대한 학생들의 인식 : 한국과학영재학교를 중심으로)

  • Bae, Sae-Byok;Kim, Kyoung-Dae;Kang, Soon-Min;Yune, So-Jung
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.5
    • /
    • pp.552-563
    • /
    • 2009
  • The purpose of this study is to investigate the students' perception of the learning support system of Korea Science Academy and to propose improvements to it. The impact of the science learning support system on 129 gifted students in Korea Science Academy (KSA) was estimated by using Likert-type items and the multiple-choice method approach for more comprehensive evaluation. The results of our investigation are as follows: First, the learning support system of KSA appears globally useful to the students. The list of educational usefulness to the students comprises, in the decreasing order of utility, classroom work, Internet, lab activities, reading rooms, library, research meetings and clubs, academic advisors (AA), SAF (Science Academy Fair), e-learning system, and finally colloquia by invited lecturers. Second, what the gifted students hope for in the realm of learning support from KSA are learning guides by subject teachers, presentation skill program, the constructions of on/off-line learning communities, etc. It seems that the results of this study would be helpful in improving the learning support system, and will provide useful information for planning the direction of future science-gifted education programs at the high-school level.

Pair Programming in Programming Lab: The Effects, Limits, and Guidelines Based on the Student Receptivity (프로그래밍 실습수업에서의 짝 프로그래밍: 학생들의 수용성(受容性)을 중심으로 본 효과와 한계, 운영 방안)

  • Jeong, Choong-Kyo
    • Journal of Digital Contents Society
    • /
    • v.19 no.9
    • /
    • pp.1663-1669
    • /
    • 2018
  • Pair programming is a software development technique in which two programmers work together at one computer. One writes code while the other reviews the code, and they switch roles frequently. Pair-programming practice in school programming lab is expected to improve the learning performance, provide collaboration experience, and promote interactions between students. This work finds out how students accept pair-programming, what make students reluctant to join pair-programming by repeated questionnaire surveys in a college programming lab class. Based on these findings aome guidelines for school pair-programming are provided. First, students should be allowed to choose to do pair-programming or not. Second, various obstacles that make students hesitate to switch roles should be removed. Third, the pair matching should be made with great care.

Design and Implementation of Repeatable and Short-spanned m-Learning Model for English Listening and Comprehension Mobile Digital Textbook Contents on Smartphone

  • Byun, Hye Won;Chin, SungHo;Chung, Kwang Sik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2814-2832
    • /
    • 2014
  • As information society matures to an even higher level and as information technology becomes a necessity to our everyday lives, the needs to develop, support and satisfy personal and social needs without the limitation of time, space, and location have become a vital point to everyday lives. Smartphone users are increasing at a staggering rate but the research on mobile-Learning model and the implementation of m-Learning scenario are still behind the needs of the users. Therefore, this paper focuses on the design of 'repeatable and short-spanned m-Learning model' to meet the needs of the learners who are on the go and on the move with their smartphones. Smartphone users frequently reach out for their phones but compare to the frequencies, the actual span of time they spend per use are relatively and surprisingly short. One way to understand this phenomenon is that the users tend to immediately replace their smartphones with laptops or desktops whenever they are available. A leaning model was needed to reflect this short and frequent use, a use that is solely based on the smartphone environment. This proposed learning model first defines this particular setting and implements the model to real smartphone users over an 8 week period. To understand whether different learning backgrounds can influence this model, different schools with online and offline learning channels participated in the experiment. User survey was conducted after the experiment to get a better understanding of the smartphone users. Pretest and posttest were conducted before and after the experiment and the data were validated and analyzed using SPSS version 18.0 for PC. Preliminary descriptive statistics, multiple regression and cross validation was conducted for the analysis. The results showed that the proposed English Listening and Comprehension Mobile Digital Textbook (ELCMDT) had a positive effect on the learners in general and was more effective for learners who were already experienced with online learning.

Hints-based Approach for UML Class Diagrams

  • Sehrish Abrejo;Amber Baig;Adnan Asghar Ali;Mutee U Rahman;Aqsa Khoso
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.9-15
    • /
    • 2023
  • A common language for modeling software requirements and design in recent years is Unified Modeling Language (UML). Essential principles and rules are provided by UML to help visualize and comprehend complex software systems. It has therefore been incorporated into the curriculum for software engineering courses at several institutions all around the world. However, it is commonly recognized that UML is challenging for beginners to understand, mostly owing to its complexity and ill-defined nature. It is unavoidable that we need to comprehend their preferences and issues considerably better than we do presently to approach the problem of teaching UML to beginner students in an acceptable manner. This paper offers a hint-based approach that can be implemented along with an ordinary lab task. Some keywords are highlighted to indicate class diagram components and make students understand the textual descriptions. The experimental results indicate significant improvement in students' learning skills. Furthermore, the majority of students also positively responded to the survey conducted in the end experimental study.

Effectiveness of Project Based Learning in Mechanical Drawing Education Using CAD (CAD 활용 기계제도 교육에서 PBL 수업의 효과)

  • Lee, Hee Won
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.2
    • /
    • pp.125-130
    • /
    • 2014
  • Although the subject of Mechanical Drawing is very important in mechanical engineering education, it is hard to teach the subject effectively, because it needs to carry out lectures and labs in parallel and needs substantially large portion of CAD lab time. In the department of Mechanical Systems and Design Engineering of SNUST, Project Based Learning is adopted to teach the subject of Mechanical Drawing. In this course, students experience to read and to draw drawings through the PBL project after the lectures on mechanical drawings. In this way, they can learn by heart the drawing skills and the operation of CAD software tools. In this paper, various PBL projects and teaching methods carried out in recent years are presented and the effects of the projects are discussed.

Qualitative Inquiry of Features of Science Education Leading Schools on Students' Positive Experiences about Science (학생들의 과학긍정경험에 영향을 주는 과학교육 선도학교 특성에 대한 질적 탐구)

  • Kwak, Youngsun;Lee, Sunghee;Kang, Hunsik;Shin, Youngjoon;Lee, Soo-Young
    • Journal of Korean Elementary Science Education
    • /
    • v.38 no.3
    • /
    • pp.317-330
    • /
    • 2019
  • The purpose of this study is to investigate the influences of science leading schools on primary and middle school students' positive experiences about science (PES) through in-depth interviews with teachers in charge of science leading schools. Science leading schools at the primary and middle school level such as Creative Convergent Science Labs and Student Participatory Science Classes were investigated and 11 teachers were participated in focus group interviews. Teacher in-depth interviews were conducted to explore the factors that led to the effectiveness of science leading schools in improving the student's PES in light of operational characteristics of science leading schools, characteristic factors of science leading schools on students PES, and improvement plans and requirements of science leading schools, as well as implications for general high schools. Science leading schools including Creative Convergent Science Labs and Student Participatory Science Classes applied for the leading school funding to secure supplies, equipments, and lab improvement for authentic science classes. In addition, reconstructed the curriculum more broadly than before, and emphasized and expanded student participatory classes and process-centered assessment at the teacher learning community level. Through student-participatory classes, the science leading schools stimulate students' interest in science, provide students with PES) through various instructions including projects, engage students in interesting science experiences in Creative Convergent Science Labs, and enhance inquiry skills and PES as well as science content knowledge. Based on the results, ways to spread the characteristics of science leading schools to general schools are suggested including expanding budget support, securing the space of science labs and improving spatial composition, providing diverse teaching and learning materials, diversifying assessment subjects and methods, and the necessity of teachers' continuous professional development, etc.