• Title/Summary/Keyword: lM HCl extraction

Search Result 30, Processing Time 0.024 seconds

Determination of 3-phenoxybenzoic Acid in Urine and Exposure Assessment of Pyrethroid Insecticides to Human Being (요중 3-phenoxybenzoic acid 미량 분석 및 pyrethroid계 살포자 노출 평가)

  • Seo, Jong-Chul;Song, Jae-Seok;Choi, Hong-Soon
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.2
    • /
    • pp.87-94
    • /
    • 2007
  • Pyrethroid insecticide have widely been used for agricultural sector and residential environments. To assess the exposure of insecticide which is absorbed through skin the analysis of urinary metabolite is essential. At present, the urinary 3-PBA was analyzed using liquid-phase extraction. But LPE have many limitations, such as long pre-treatment time and low recovery. So, this study was conducted to determine the optimum conditions for analysing 3-PBA in urine using solid phase extraction. Furthermore, this study intend to investigate the relation of concentrations of pyrethroid, deltamethrin in air and 3-PBA in urine. The optimum condition for hydrolysis was found to be done with hydrochloric acid for one hour. The recovery rates of 3-PBA were $84.6%{\pm}1.2%$, $54.8{\pm}0.9%$, $99.8{\pm}1.2%$ with XAD-2, XAD-7, XAD-16 using as the aborbents and acetone as eluents respectively. But acetonitrle and methanol gave low recovery rate and methyl cellosolve could not elute the compound. The amount of acetone for elution were 6mL, 9mL, 3mL for XAD-2, XAD-7, XAD-16 as absorbents respectively. The non-absorbed rates was $0.8{\pm}0.5%$, and $0.7{\pm}0.3%$ under XAD-16, mesh size 140-200, amount of resin 1.4g and the flow rate of eluent was 0.1mL/min. In the concentration process, we obtained 11 times higher concentration of material. The amounts of urinary 3-PBA were. The LODs of 3-PBA and deltamethrin were 0.004 mg/L, 0.038 mg/L, respectively. The further research of minute monitoring which include spray pattern, environmental condition is needed And more research about the relation between total pyrethroid exposure and urinary various metabolite are also necessary.

Extraction of Liberated Reducing Sugars from Rapeseed Cake via Acid and Alkali Treatments (산 및 알칼리 처리에 의한 유채박의 유리당 추출)

  • Jeong, Han-Seob;Kim, Ho-Yong;Ahn, Sye-Hee;Oh, Sei-Chang;Yang, In;Choi, In-Gyu
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.11
    • /
    • pp.1575-1581
    • /
    • 2011
  • Rapeseed cake, which is the organic waste remaining after rapeseed oil production, is readily available and considered an ecologically-friendly resource with very low cost and high dietary fiber content. This research was carried out for two reasons. First, it was done to analyze the liberated reducing sugar content of rapeseed cake. Second, it was done to investigate the effects on the sugar yield of the various concentrations of acidic and alkaline catalysts used for the hydrolysis of rapeseed cake and the concentrations of rapeseed cake in each catalyst. Several amounts of ground rapeseed cake, 0.5 g, 1 g, and 2 g, were put into 100 mL of catalysts such as sulfuric acid (0.5~2%), hydrochloric acid (0.5~2%), and sodium hydroxide (0.5~2%). Then they were hydrolyzed for 5 min at 121$^{\circ}C$. After hydrolysis, HPLC equipped with an RI detector was used to analyze liberated reducing sugars such as sucrose, glucose, galactose, fructose, and arabinose separated from rapeseed cake. The degradation rate of rapeseed cake was the highest in hydrochloric acid. As the catalyst concentrations used for hydrolysis of rapeseed cake increased, the degradation rate of rapeseed cake also significantly increased. Total reducing sugar content was the highest in hydrochloric acid, and it increased with the increase of catalyst concentrations. However, as the amount of rapeseed cake increased, the total reducing sugar content decreased, exceptionally sucrose in the case of sodium hydroxide.

Optimized Processing Condition of Production of Nannochloropsis oculata under Light-emitting Diode (LED) Condition (LED배양조건에서 미세조류 Nannochloropsis oculata의 생산 효율성을 높이는 공정 최적화)

  • Lee, Nam Kyu
    • Journal of Life Science
    • /
    • v.27 no.7
    • /
    • pp.754-759
    • /
    • 2017
  • The 100 l culture system was made on the basis of LED light, and Nannochloropsis oculata was cultured in f/2 medium at light intensity ($100{\mu}mol/m^2/s$), culture temperature ($20^{\circ}C{\pm}1^{\circ}C$) and LD cycle (12hr). As a result, the maximum biomass of 1.07 g/l was cultured as a result of 100 l mass culture at $100{\mu}mol/m^2/s$ and 24 mg/l nitrate concentration in LED blue (475 nm). The extraction was carried out using sonicator, homogenizer and chemical method 0.5M HCl shredding method. The contents of chlorophyll a, chlorophyll b and carotenoid were 1.6, 0.5 and 0.3 mg/g cell. When using homogenizer, it was measured at 1.0, 0.6 and 0.2 mg/g cell. The chemical breakdown method of 0.5M HCl, chlorophyll a, b, and carotenoid contents were measured as 0.9, 0.8, 0 mg/g cell. The highest amount of biomass during the distruption time was measured at 3.6 mg/g cell at 15 min disintegration and acetone, 3.6 mg/g cell of acetone, methanol, and ethanol were measured as effective solvents. Concentration was measured by using microfilter, disk type continuous centrifuge and tubular type continuous centrifuge were 16.0, 1.1 and 0.5 g/l, respectively. Four kinds of equipment such as hot air dryer, vacuum dryer, spray dryer and freeze dryer were tested to optimize the drying process. As a result, the recovery rates of spray dryer and freeze dryer were 80% and 60%.

Studies on Determination of trace amount of Se in Volcanic Rocks by Atomic Absorption Spectrophotometry (원자 흡수 분광광도법에 의한 화산암중 극미량의 Se정량에 관한 연구)

  • Kim, Chan-Kook;Sung, Hak-Je;Chung, Kang-Sup;Yamaya, Kazuhisa
    • Analytical Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.484-489
    • /
    • 1999
  • The extraction of trace amounts of Se in volcanic rock was investigated using the hydride generation method and atomic absorption spectrophotometry. The powdered rock, 1.0 g, was decomposed with the mixture of $HClO_4$, $HNO_3$ and HF in an acid digestion bomb at $140^{\circ}C$ for 2 hours. For the reduction of Se(VI) to Se(IV) in the solution, 10 mL of 6 M HCl and 0.2 mL of 1 M KBr were added to the solution and the mixture was heated for 30~45 minutes. $H_2Se$ was produced by adding 3% $NaBH_4$ as a strong reducing agent, extracted by nitrogen gas, and was absorbed twice into $KMnO_4$solution. The contents of Se in the solution were determined by generation/AAS. According to the proposed method, 1.0 ng or more of Se was quantitatively extracted and Se levels of 2.5 ng/g or more in rock samples could be determined. For example, Se in a rhyolite was determined with the precision of $19.5{\pm}1.3ng/g$(95% confidence, n=6).

  • PDF

Reconvery of Platinum Group Metals from Spent Automotive Catalysts by Hydrochloric Acid Leaching (自動車 廢觸媒로부터 鹽酸浸出에 의한 自金族 金屬의 回收)

  • Lee, Jae-Chun;Jeong, Jin-Ki;Kim, Min-Seuk;Kim, Byung-Su;Kim, Chi-Kwon
    • Resources Recycling
    • /
    • v.13 no.5
    • /
    • pp.28-36
    • /
    • 2004
  • The extraction of platinum group metals such as Pt, Pd and Rh from spent automobile catalyst has been investigated by leaching in HCl solutions using $HNO_3$ or NaOCl as a oxidant. The effect of type and amount of oxidant, reaction time and pulp density on the extraction of platinum group metals was examined. Platinum group metals were recovered by the cementation method using aluminum as a reducing agent. The extraction ratio was higher when NaOCl was used as a oxidant. The optimum leaching conditions were obtained to be: HCl 8 M, the amount of NaOCl 1.4 mole, leaching temperature $90^{\circ}C$, leaching time 180 minutes, pulp density 400g/L. Under the optimum conditions, the extraction of Pt, Pd and Rh were 96.1%, 93.6% and 77.3%, respectively. With the addition of 2.0g of aluminum which corresponds to 28 equivalent the reduction were 98% for Pt. 98.8% for Pd and 65.3% for Rh, respectively.

Simultaneous analysis of ethylene glycol and glycolic acid in bio-specimens by GC/MS (생체시료에서 GC/MS에 의한 에틸렌글리콜 및 대사체인 글리콜산 동시분석)

  • Lee, Joon-Bae;Park, Mee-Jung;Sung, Tae-Myung;Choi, Byung-Ha;You, Jae-Hoon;Shon, Shung-Kun;Paeng, Ki-Jung
    • Analytical Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.544-550
    • /
    • 2010
  • Mistaking pink colored thermal oil for grape wine, a victim drank the oil to death which was analyzed to contain 39% of ethylene glycol. Thermal oil could be used for heat transfer to prevent the malfunction due to the high pressure in the boiler operated at high temperature when using water. Main component of thermal oil is known to be mineral oil or ethylene glycol. From the blood and other tissue of the victim from autopsy, ethylene glycol and its metabolite were simultaneously analyzed by GC/MS after extraction under acidic condition with acetonitrile followed by derivatization with BSTFA. About 0.2 g of the specimens were pretreated with 50 uL of 0.5 M HCl solution to keep acidic condition, then dehydrated with anhydrous sodium sulfate followed by concentration under nitrogen stream. Ethylene glycol and glycolic acid concentration in blood was measured to be $2,755\;{\mu}g/mL$ and $174\;{\mu}g/mL$ respectively. In other specimen, the concentration of ethylene glycol and glycolic acid was $860\;{\mu}g/g\sim1,290\;{\mu}g/g$ and $93\;{\mu}g/g\sim134\;{\mu}g/g$. Especially, crystal appeared in kidney which was supposed xalate from the metabolite of ethylene glycol.

Determination of a Trace Amount of Copper, Lead, Cadmium and Zinc in Water by Solvent Extraction and Square Wave Polarography (溶媒抽出-矩形波폴라로그래피에의 물중의 미량 구리, 납, 카드뮴 및 아연의 定量)

  • Moon Su-Chan
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.372-378
    • /
    • 1977
  • The following new techniques have been developed: (A); To a 500ml of sample water, it was adjusted pH 10 with ammonia-anmonium citrate, added 10ml of 1${\%}$ sodium diethyldithiocarbamate and extracted three times with 10ml of CHCl3. The extract was shaken with 10ml of 0.05N $HCl-4{\times}10^{-4}M\;HgCl_2$. The aqueous solution was added 2ml of 2N KCl and washed two times with 10ml of pure $CHCl_3$, and then recorded square wave polarograms. (B); To a 500ml of sample water adjusted pH 10 with ammonia-ammonium citrate, it was added 2ml of 1${\%}$ 8-hydroxyquinoline and extracted three times with 10ml $CHCl_3$. The separated $CHCl_3$ phase was shaken with 10ml of 0.2 N HCl. The aqueous solution was recorded polarograms directly. These methods can be used for determination of the ppb order of metal in water with an error of ${\pm}10{\%}$. The method (B) can not be used for the determination of zinc on account of the free 8-hydroxyquinoline.

  • PDF

Determination of secondary aliphatic amines in surface and tap waters as benzenesulfonamide derivatives using GC-MS (Benzenesulfonamide 유도체로 GC-MS를 사용한 지표수 및 수돗물 중 2차 지방족 아민의 분석)

  • Park, Sunyoung;Jung, Sungjin;Kim, Yunjeong;Kim, Hekap
    • Analytical Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.96-105
    • /
    • 2018
  • This study aimed to improve the method for detecting eight secondary aliphatic amines (SAAs), so as to measure their concentrations in fresh water and tap water samples. NaOH (8 mL, 10 M) and benzenesulfonyl chloride (2 mL) were added to a water sample (200 mL), and the mixture was stirred at $80^{\circ}C$ for 30 min. An additional NaOH solution (10 mL) was added and the stirring was continued for another 30 min. The pH of the cooled mixture was adjusted to 5.5-6.0 by adding HCl (35 %), and the SAAs were extracted using dichloromethane (50 mL). This extraction was repeated once. The extract was then washed with $NaHCO_3$ (15 mL, 0.05 M) and dried over $Na_2SO_4$ (4 g). The extract was finally concentrated to 0.1 mL, of which $1{\mu}L$ was analyzed for SAAs by GC-MS. The linearity of the spike calibration curves was high ($r^2=0.9969-0.9996$). The detection limits of the method ranged from 0.01 to $0.20{\mu}g/L$, and its repeatability and reproducibility (expressed as relative standard deviation) were both less than 10 % (6.6-9.4 %). Its accuracy (measured in percentage error) ranged between 2.4 % and 6.1 %. The established method was applied to the analysis of five surface water and 82 tap water samples. Dimethylamine was the only SAA detected in all the water samples, and its average concentration was $0.79{\mu}g/L$ (range: $0.20-2.54{\mu}g/L$). Therefore, this study improved the analytical method for SAAs in surface water and tap water, and the regional and seasonal concentration distributions were obtained.

Determination of Iodide in spent PWR fuels (경수로 사용 후 핵연료 내 요오드 정량)

  • Choi, Ke Chon;Lee, Chang Heon;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.110-116
    • /
    • 2003
  • A study has been done on the separation of iodide from spent pressurized water reactor (PWR) fuels and its quantitative determination using ion chromatography. Spent PWR fuels were dissolved with mixed acid of nitric and hydrochloric acids (80 : 20 molL%) which can oxidize iodide to iodate to prevent it from be vaporized. After reducing ${IO_3}^-$ ­to $I_2$ in 2.5 M $HNO_3$ with $NH_2OH{\cdot}HCl$, Iodine was selectively separated from actinides and all other fission products with carbontetrachloride and back-extracted with 0.1 M $NaHSO_3$. Recovered iodide was determined using the ion chromatograph of which the column was installed in a glove box for the analysis of radioactive materials. In practice, spent PWR fuel with 42,000~44,000 MWd/MtU was analyzed and its quantity was compared to that calculated by burnup code, ORIGEN2. The agreement was achieved with a deviation of -8.3~-0.5% from the ORIGEN 2 data, $324.5{\sim}343.6{\mu}g/g$.

Preconcentration and Determination of Fe(III) from Water and Food Samples by Newly Synthesized Chelating Reagent Impregnated Amberlite XAD-16 Resin

  • Tokahoglu, Serife;Ergun, Hasan;Cukurovah, Alaaddin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1976-1980
    • /
    • 2010
  • A simple and reliable method has been developed to selectively separate and concentrate trace amounts of Fe(III) ions from water and food samples by using flame atomic absorption spectrometry. A new reagent, 5-hydroxy-4-ethyl-5,6-di-pyridin-2-yl-4,5-dihydro-2H-[1,2,4] triazine-3-thione, was synthesized and characterized by using FT-IR spectroscopy and elemental analysis. Effects of pH, concentration and volume of elution solution, sample flow rate, sample volume and interfering ions on the recovery of Fe(III) were investigated. The optimum pH was found to be 5. Eluent for quantitative elution was 10 mL of 2 M HCl. The preconcentration factor of the method, detection limit (3s/b, ${\mu}gL^{-1}$) and relative standard deviation values were found to be 25, 4.59 and 1%, respectively. In order to verify the accuracy of the method, two certified reference materials (TMDA 54.4 lake water and SRM 1568a rice flour) were analyzed. The results obtained were in good agreement with the certified values. The method was successfully applied to the determination of Fe(III) ions in water and food samples.