DOI QR코드

DOI QR Code

Determination of secondary aliphatic amines in surface and tap waters as benzenesulfonamide derivatives using GC-MS

Benzenesulfonamide 유도체로 GC-MS를 사용한 지표수 및 수돗물 중 2차 지방족 아민의 분석

  • Park, Sunyoung (Department of Environmental Science, Kangwon National University) ;
  • Jung, Sungjin (Department of Environmental Science, Kangwon National University) ;
  • Kim, Yunjeong (Department of Environmental Science, Kangwon National University) ;
  • Kim, Hekap (School of Natural Resources and Environmental Science, Kangwon National University)
  • Received : 2018.02.05
  • Accepted : 2018.04.04
  • Published : 2018.04.25

Abstract

This study aimed to improve the method for detecting eight secondary aliphatic amines (SAAs), so as to measure their concentrations in fresh water and tap water samples. NaOH (8 mL, 10 M) and benzenesulfonyl chloride (2 mL) were added to a water sample (200 mL), and the mixture was stirred at $80^{\circ}C$ for 30 min. An additional NaOH solution (10 mL) was added and the stirring was continued for another 30 min. The pH of the cooled mixture was adjusted to 5.5-6.0 by adding HCl (35 %), and the SAAs were extracted using dichloromethane (50 mL). This extraction was repeated once. The extract was then washed with $NaHCO_3$ (15 mL, 0.05 M) and dried over $Na_2SO_4$ (4 g). The extract was finally concentrated to 0.1 mL, of which $1{\mu}L$ was analyzed for SAAs by GC-MS. The linearity of the spike calibration curves was high ($r^2=0.9969-0.9996$). The detection limits of the method ranged from 0.01 to $0.20{\mu}g/L$, and its repeatability and reproducibility (expressed as relative standard deviation) were both less than 10 % (6.6-9.4 %). Its accuracy (measured in percentage error) ranged between 2.4 % and 6.1 %. The established method was applied to the analysis of five surface water and 82 tap water samples. Dimethylamine was the only SAA detected in all the water samples, and its average concentration was $0.79{\mu}g/L$ (range: $0.20-2.54{\mu}g/L$). Therefore, this study improved the analytical method for SAAs in surface water and tap water, and the regional and seasonal concentration distributions were obtained.

이 연구는 발암 의심 물질인 nitrosamine 화합물의 유기 전구물질인 8종의 이차 지방족 아민 화합물의 분석 방법을 개선한 후, 지표수 및 수돗물에서의 농도 분포를 측정하고자 실시하였다. 여과한 물 시료(200 mL)에 10 M NaOH (8 mL)와benzenesulfonyl chloride (2 mL)를 첨가하고 $80^{\circ}C$에서 30분 동안 교반한 후, 10 M NaOH (10 mL)를 첨가하여 30분 동안 교반하였다. 실온으로 식힌 물 시료에 35 % HCl를 첨가하여 pH를 5.5-6.0로 조절한 후, dichloromethane (50 mL)을 가하여 진탕기로 30분 동안 추출하였고, 이 추출 과정은 한 번 더 반복하였다. 추출액(100 mL)을 0.05 M $NaHCO_3$ 수용액(15 mL)으로 씻어준 후 $Na_2SO_4$(4 g)로 건조하였다. 여과액은 회전증발기와 질소가스를 사용하여 0.1 mL까지 농축한 후, GC-MS로 이차 지방족 아민에 대해 분석하였다. 검량선의 직선성은 결정계수($r^2$)로 0.9969-0.9996이었다. 방법검출한계는 $0.01-0.20{\mu}g/L$이었고, 반복성 및 재현성은 RSD로 나타낼 때 모두 10 % 이내이었다(6.6-9.4 %). 퍼센트 오차로 나타낸 정확도는 $0.6{\mu}g/L$에 대해 2.4-6.1 %이었다. 확립된 분석 방법을 5개의 지표수와 82 개의 수돗물에 대해 분석하였다. Dimethylamine은 모든 물 시료에서 검출되었으며, 농도는 평균 $0.79{\mu}g/L$이었고 범위는 $0.20-2.54{\mu}g/L$이었다. 따라서 본 연구에서는 지표수 및 수돗물 중 이차 지방족 아민에 대한 분석 방법을 개선하였으며, 지역 및 계절별 농도 분포를 파악하였다.

Keywords

References

  1. F. Ma, Y. Wan, G. Yuan, L. Meng, Z. Dong, and J. Hu, Environ. Sci. Technol., 46(6), 3236-3243 (2012). https://doi.org/10.1021/es204520b
  2. W. A. Mitch, J. O. Sharp, R. R. Trussell, R. L. Valentine, L. Alvarez-Cohen, and D. L. Sedlak, J. Environ. Sci. Eng., 20(5), 389-404 (2003). https://doi.org/10.1089/109287503768335896
  3. H. Zhang, S. Ren, j. Yu, and M. Yang, J. Environ. Sci., 24(11), 1885-1890 (2012). https://doi.org/10.1016/S1001-0742(11)61055-3
  4. W. Wang, S. Ren, H. Zhang, J. Yu, W. An, J. Hu, and M. Yang, Water Res., 45(16), 4930-4938 (2011). https://doi.org/10.1016/j.watres.2011.06.041
  5. F. Sacher, S. Lenz, and H. J. Brauch, J. Chromatogr. A, 764(1), 85-93 (1997). https://doi.org/10.1016/S0021-9673(96)00868-0
  6. A. Poste, M. Grung, and R. F. Wright, Sci. Total Environ., 481(15), 274-279 (2015).
  7. H. Kataoka, J. Chromatogr. A, 733(1), 19-34 (1996). https://doi.org/10.1016/0021-9673(95)00726-1
  8. A. Q. Zhang, S. C. Mitchell, and R. L. Smith, Clin. Chim. Acta., 233(1-2), 81-88 (1995). https://doi.org/10.1016/0009-8981(95)91628-E
  9. G. W. Schade and P. J. Crutzen, J. Atmos. Chem., 22(3), 319-346 (1995). https://doi.org/10.1007/BF00696641
  10. U. S. EPA, Acute Exposure Guideline Levels (AEGLs) for dimethylamine, 2008.
  11. H. Greim, D. Bury, H-J. Klimisch, M. Oeben-Negele, and K. Ziegler-Skylakakis, Chemosphere, 36(2), 271-295 (1998). https://doi.org/10.1016/S0045-6535(97)00365-2
  12. K. Rostkowska, K. Zwierz, A. Rozanski, J. Moniuszko-Jakoniuk, and A. Roszczenko, Pol. J. Environ. Stud., 7(6), 321-325 (1998).
  13. J. Nawrocki and P. Andrzejewski, J. Hazard. Mater., 189(1-2), 1-18 (2011). https://doi.org/10.1016/j.jhazmat.2011.02.005
  14. Z. Chen and R. L. Valentine, Environ. Sci. Technol., 41(17), 6059-6065 (2007). https://doi.org/10.1021/es0705386
  15. Y.-Y., Zhao, J. Boyd, S. E. Hrudey, and X.-F. Li, Environ. Sci. Technol., 40(24), 7636-7641 (2006). https://doi.org/10.1021/es061332s
  16. U. S. EPA Integrated Risk Information System, http://www.epa.gov/iris/, accessed 15 April 2009.
  17. U. S. EPA, Method 521, Determination of Nitrosamines in Drinking Water by Solid Phase Extraction and Capillary Column Gas Chromatography with Large Volume Injection and Chemical Ionization Tandem Mass Spectrometry (MS/MS), EPA/600/R-05/054, Ohio, 2004.
  18. B. Jurado-Sanchez, E. Ballesteros and M. Gallego, Water Res., 46(14), 4543-4555 (2012). https://doi.org/10.1016/j.watres.2012.05.039
  19. G. Hawksworth and M. J. Hill, Br. J. Cancer, 29(5), 353-358 (1974). https://doi.org/10.1038/bjc.1974.82
  20. C. L. Walters, F. P. A. Carr, C. S. Dyke, M. J. Saxby, P. L. R. Smith, and R. Walker, Food Cosmet. Toxicol., 17(5), 473-479 (1979). https://doi.org/10.1016/0015-6264(79)90006-3
  21. S. S. Mirvish, Cancer, 58(8), 1842-1850 (1986). https://doi.org/10.1002/1097-0142(19861015)58:8+<1842::AID-CNCR2820581410>3.0.CO;2-#
  22. F. Hao, T. Lwin, W. J. Bruckard, and J. T. Woodcock, J. Chromatogr. A, 1055(1-2), 77-85 (2004). https://doi.org/10.1016/j.chroma.2004.08.130
  23. R. Herraez-Hernandez, C. Chafer-Pericas, J. Verdu-Andres, and P. Campins-Falco, J. Chromatogr. A, 1104(1-2), 40-46 (2006). https://doi.org/10.1016/j.chroma.2005.11.121
  24. M. Abalos, J. M. Bayona, and F. Ventura, Anal. Chem., 71(16), 3531-3537 (1999). https://doi.org/10.1021/ac990197h
  25. N. V. Huy, M. Murakami, H. Sakai, K. Oguma, K. Kosaka, M. Asami, and S. Takizawa, Water Res., 45(11), 3369-3377 (2011). https://doi.org/10.1016/j.watres.2011.03.053
  26. X. H. Yang, M. I. Scranton, and C. Lee, Mar. Ecol. Prog. Ser., 108(3), 303-312 (1994). https://doi.org/10.3354/meps108303
  27. Y. H. Lee and S. U. Park, Water Air Soil. Pollut., 135(1-4), 23-37 (2002). https://doi.org/10.1023/A:1014771314751
  28. S. Jung, D. Kim, and H. Kim, Pol. J. Environ. Stud., 25(6), 2689-2693 (2016). https://doi.org/10.15244/pjoes/64311
  29. K. Han and H. Kim, Anal. Sci. Technol., 23(6), 551-559 (2010). https://doi.org/10.5806/AST.2010.23.6.551