• Title/Summary/Keyword: l6s rRNA

Search Result 227, Processing Time 0.036 seconds

Isolation and Characteristics of Exopolysaccharide Producing Bacteria in a Ginseng Root System (인삼 근계로부터 다당 생성세균의 분리 및 특성)

  • Cho, Geon-Yeong;Jeon, In-Hwa;Han, Song-Ih;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.297-300
    • /
    • 2013
  • EPS producing bacteria were enumerated in ginseng root system (rhizosphere soil, rhizoplane, inside of root). EPS producing bacterial density of rhizosphere soil, rhizoplane and inside of root were distributed $9.0{\times}10^6$ CFU/g, $7.0{\times}10^6$ CFU/g, and $1.4{\times}10^3$ CFU/g, respectively. Phylogenetic analysis of the 24 EPS producing isolates based on the 16S rRNA gene sequences, EPS producing isolates from rhizosphere soil (RS) belong to genus Arthrobacter (6 strains) and Rhizobium (1 strain). EPS producing bacteria from rhizoplane (RP) were Arthrobacter (6 strains), Rhodococcus (1 strain) and Pseudomonas (1 strain). EPS producing bacteria from inside of root (IR) were categorized into Rhzobium (6 strains), Bacillus (1 strain), Rhodococcus (1 strain), and Pseudomonas (1 strain). Phylogenetic analysis indicated that Arthrobacter may be a member of representative EPS producing bacteria from ginseng rhizosphere soil and rhizoplane, and Rhizobium is typical EPS producing isolates from inside of ginseng root. The yield of EPS was 10.0 and 4.9 g/L by Rhizobium sp. 1NP2 (KACC 17637) and Arthrobacter sp. 5MP1 (KACC 17636). The purified EPS were analyzed by Bio-LC and glucose, galactose, mannose and glucosamine were detected. The major EPS sugar of these strains was glucose (72.7-84.9%).

The Rapid Detection of Pathogens in Organically Grown Vegetables Using PCR-DGGE (PCR-DGGE를 이용한 유기농 채소의 유해 미생물 신속 검지)

  • Kwon, Oh Yeoun;Son, Seok Min
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.370-375
    • /
    • 2011
  • In this study the polymerase chain reaction (PCR) combined with denaturing gradient gel electrophoresis (DGGE) was evaluated as a method permitting the rapid detection of pathogens in fresh originally grown vegetables. A universal primer (341GCf/534r) was selected for its ability to amplify the V3 region of 16S-rRNA genes in their target pathogens (Salmonella typhimurium, Pseudomonas fluorescens, Bacillus cereus, Listeria monoytogenes, Staphyloocus aureus, E. coli). The 194 bp fragments in PCR were successfully duplicated as expected. The amplified fragments of the same size from six different pathogens also showed good separation upon DGGE. The detection limit of PCR-DGGE for six pathogens in fresh-cut lettuces were over $10^{5}$ CFU/g when sampled by stomaching. However, when the sampling method was changed from stomaching to shaking, the detection limit of six pathogens in organic vegetables was shown to increase by over $10^{1}$ CFU/g, but only those of B. cereus were over $10^{3}$ CFU/g. Therefore, PCR-DGGE was shown to be a reliable method for the detection of pathogens in fresh-cut vegetables.

Isolation of Simiduia sp. SH-2 and Characterization of Its β-Agarase (한천분해세균 Simiduia sp. SH-2 균주의 분리 및 β-agarase의 특성조사)

  • Lee, Dong-Geun;Kim, Geun-Dae;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.32 no.10
    • /
    • pp.778-783
    • /
    • 2022
  • This study isolated a new agarase-producing bacterium and characterized its agarase. A new agar-degrading strain was isolated from the seashore of Namhae in Gyeongnam province, Korea, and was purely cultured using the Marine Agar 2216 media. The isolated bacterium was identified as Simiduia sp. SH-2 after 16S rRNA gene sequencing. The crude agarase was obtained from the culture medium of the Simiduia sp. SH-2 strain, and the agar-degrading activity was measured. The highest level of activity of the Simiduia sp. SH-2-derived agar-degrading enzyme was 625 U/l. Agar degradation activity was most significant at 40℃ and pH 7.0. Compared to the activity at 40℃, the relative activity was 31% at 20℃ and 71% at 30℃. Compared to the activity at pH 7.0, the relative activity was 94% and 89% at pH 6.0 and pH 8.0, respectively. Residual activity was greater than 96% after exposure to 20℃ and 30℃ for 2 hr and more than 49% after exposure to 40℃ for 2 hr. Simiduia sp. SH-2 was identified as a strain producing β-agarase that creates neoagarooligosaccharides, such as neoagarotetraose and neoagarohexaose. Therefore, the Simiduia sp. SH-2 strain and its β-agarase are expected to be useful functional material producers in the food, cosmetic, and pharmaceutical industries.

Potential of Antifungal Lactic Acid Bacteria Isolated from Kimchi as Cheese Starters (김치 분리 항진균 유산균의 치즈 스타터로서 이용 가능성)

  • Oh, Hyun Hee;Huh, Chang Ki;Choi, Ha Nuel;Yang, Hee Sun;Bae, In Hyu;Lee, Jai Sung;Jeong, Yong Seob;Lee, Nam Keun;Jung, Hoo Kil
    • Journal of Dairy Science and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.133-141
    • /
    • 2013
  • This study was performed to identify the cheese starter potential of antifungal lactic acid bacteria isolated from Kimchi. Eight fungi were isolated from cheese or the cheese ripening room, and identified as Penicillium and Cladosporium by ITS-5.8S rDNA analysis. Twenty-two lactic acid bacteria species with antifungal activity were isolated from Kimchi, and identified as Lactobacillus and Pediococcus by 16S rRNA sequence analysis. Six lactic acid bacteria species were selected (L. sakei subsp. ALJ011, L. sakei subsp. ALI033, L. sakei subsp. ALGy039, P. pentosaceus ALJ015, P. pentosaceus ALJ024, and P. pentosaceus ALJ026) based on higher antifungal activity from the initial 22 species. Out of the six identified species, L. sakei subsp. ALI033 had the highest antifungal activity. For growth of the six lactic acid bacteria, optimal temperature and pH were $30{\sim}37^{\circ}C$ and 7.0, respectively. Proteolytic activities of the six lactic acid bacteria were almost as strong as the commercial strain Str. thermophilus Body-1. Coagulative activities of L. sakei subsp. ALI033, P. pentosaceus ALJ015, and P. pentosaceus ALJ024 were higher than those of L. sakei subsp. ALJ011, L. sakei subsp. ALGy039, and P. pentosaceus ALJ026. The acid resistance of L. sakei subsp. was higher than that of P. pentosaceus. The major organic acid component of the lactic acid bacteria culture medium was lactic acid.

  • PDF

Change in the composition and enzyme activity of culturable lactic acid bacteria in Nuruk during fermentation at different temperatures (온도를 달리한 누룩 발효 기간별 배양 유산균 변화 및 분리 유산균들의 효소 활성)

  • Nam, Kang;Lee, Nam Keun;Yum, Eun-Ji;Kim, Yong-Sik;Kim, Dae-Hyuk;Yeo, Soo-Hwan;Jeong, Yong-Seob
    • Food Science and Preservation
    • /
    • v.22 no.6
    • /
    • pp.920-925
    • /
    • 2015
  • The microbial composition in Nuruk, a Korean cereal fermentation starter, is a critical factor for the quality and organoleptic properties of traditional alcoholic beverages. This study was aimed at monitoring the compositional change and enzyme activity of culturable lactic acid bacteria (LAB) in two types of Nuruk fermented at different temperatures. All culturable LAB were isolated at various time points (0, 3, 6, 10, 20, and 30 days) and identified by 16S rRNA sequencing. In traditional Nuruk type A (TN-A), which was fermented at $36^{\circ}C$, the population of total culturable LAB during the fermentation period was between $10^4$ and $10^5$ log CFU/mL. On the other hand, the LAB population in traditional Nuruk type B (TN-B) fermented at $45^{\circ}C$ (primary fermentation for 10 days) and $35^{\circ}C$ (secondary fermentation for 20 days) was $10^2$ log CFU/mL; however, these bacteria could not be detected after 6 days. Major LAB strains were identified in both Nuruk types: (1) from the MRS-culture of TN-A, Pediococcus pentosaceus at 3-30 days; (2) from MRS-culture of TN-B, P. pentosaceus at 3 days and Enterococcus hirae at 6 days. The protease activities of the dominant LAB isolated from the TN-A and TN-B cultures were within the ranges of 0.64~1.03 mg/mL and 0.74~0.81 mg/mL (tyrosine content), respectively, whereas the ${\alpha}$-amylase activities were 0.75~0.98 mg/mL and 0.78~0.79 mg/mL (amylose content), respectively.

Optimization of Medium to Improve Protease Production Using Response Surface Methodology by Bacillus amyloliquefaciens SRCM115785 (반응표면분석법을 이용한 Bacillus amyloliquefaciens SRCM115785의 protease 활성증가를 위한 배지 최적화)

  • Yang, Hee Gun;Ha, Gwangsu;Ryu, Myeong Seon;Park, Se Won;Jeong, Ho Jin;Yang, Hee-Jong;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.761-770
    • /
    • 2021
  • In this study, the optimal medium composition for enhancing protease production was established by the Bacillus strain isolated from Makgeolli, a traditional fermented food, using the response surface methodology. B. amyloliquefaciens SRCM115785 was selected as the protease producer by productivity analysis and identified by 16S rRNA gene sequencing. Plackett-Burman design (PBD) was introduced to analyze the effect of each component on protease production among the 11 selected medium components. As a result, glucose, yeast extract, and beef extract were finally selected as factors for enhancing protease production. Central composite design (CCD) analysis was designed as a method to determine the optimal concentration of each component for protease production and the concentration of each medium composition for maximum protease production was predicted to glucose 6.75 g/l, yeast extract 12.42 g/l and beef extract 17.48 g/l. The suitability of the experimental model was proved using ANOVA analysis and as a result of quantitative analysis to prove this, the amount of increase was 230.47% compared to the LB medium used as a control. Through this study, the optimization of medium composition for enhancing protease production was established, and based on this, it is expected that it can be efficient use of protease as an industrial enzyme.

Antioxidative effects of fermented sesame sauce against hydrogen peroxide-induced oxidative damage in LLC-PK1 porcine renal tubule cells

  • Song, Jia-Le;Choi, Jung-Ho;Seo, Jae-Hoon;Kil, Jeung-Ha;Park, Kun-Young
    • Nutrition Research and Practice
    • /
    • v.8 no.2
    • /
    • pp.138-145
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: This study was performed to investigate the in vitro antioxidant and cytoprotective effects of fermented sesame sauce (FSeS) against hydrogen peroxide ($H_2O_2$)-induced oxidative damage in renal proximal tubule LLC-PK1 cells. MATERIALS/METHODS: 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical ($^{\bullet}OH$), and $H_2O_2$ scavenging assay was used to evaluate the in vitro antioxidant activity of FSeS. To investigate the cytoprotective effect of FSeS against $H_2O_2$-induced oxidative damage in LLC-PK1 cells, the cellular levels of reactive oxygen species (ROS), lipid peroxidation, and endogenous antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) were measured. RESULTS: The ability of FSeS to scavenge DPPH, $^{\bullet}OH$ and $H_2O_2$ was greater than that of FSS and AHSS. FSeS also significantly inhibited $H_2O_2$-induced ($500{\mu}M$) oxidative damage in the LLC-PK1 cells compared to FSS and AHSS (P < 0.05). Following treatment with $100{\mu}g/mL$ of FSeS and FSS to prevent $H_2O_2$-induced oxidation, cell viability increased from 56.7% (control) to 83.7% and 75.6%, respectively. However, AHSS was not able to reduce $H_2O_2$-induced cell damage (viability of the AHSS-treated cells was 54.6%). FSeS more effectively suppressed $H_2O_2$-induced ROS generation and lipid peroxidation compared to FSS and AHSS (P < 0.05). Compared to the other sauces, FSeS also significantly increased cellular CAT, SOD, and GSH-px activities and mRNA expression (P < 0.05). CONCULUSIONS: These results from the present study suggest that FSeS is an effective radical scavenger and protects against $H_2O_2$-induced oxidative damage in LLC-PK1 cells by reducing ROS levels, inhibiting lipid peroxidation, and stimulating antioxidant enzyme activity.

Effect of Lactobacillus mucosae on In vitro Rumen Fermentation Characteristics of Dried Brewers Grain, Methane Production and Bacterial Diversity

  • Soriano, Alvin P.;Mamuad, Lovelia L.;Kim, Seon-Ho;Choi, Yeon Jae;Jeong, Chang Dae;Bae, Gui Seck;Chang, Moon Baek;Lee, Sang Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1562-1570
    • /
    • 2014
  • The effects of Lactobacillus mucosae (L. mucosae), a potential direct fed microbial previously isolated from the rumen of Korean native goat, on the rumen fermentation profile of brewers grain were evaluated. Fermentation was conducted in serum bottles each containing 1% dry matter (DM) of the test substrate and either no L. mucosae (control), 1% 24 h broth culture of L. mucosae (T1), or 1% inoculation with the cell-free culture supernatant (T2). Each serum bottle was filled anaerobically with 100 mL of buffered rumen fluid and sealed prior to incubation for 0, 6, 12, 24, and 48 h from which fermentation parameters were monitored and the microbial diversity was evaluated. The results revealed that T1 had higher total gas production (65.00 mL) than the control (61.33 mL) and T2 (62.00 mL) (p<0.05) at 48 h. Consequently, T1 had significantly lower pH values (p<0.05) than the other groups at 48 h. Ammonia nitrogen ($NH_3$-N), individual and total volatile fatty acids (VFA) concentration and acetate:propionate ratio were higher in T1 and T2 than the control, but T1 and T2 were comparable for these parameters. Total methane ($CH_4$) production and carbon dioxide ($CO_2$) were highest in T1. The percent DM and organic matter digestibilities were comparable between all groups at all times of incubation. The total bacterial population was significantly higher in T1 (p<0.05) at 24 h, but then decreased to levels comparable to the control and T2 at 48 h. The denaturing gradient gel electrophoresis profile of the total bacterial 16s rRNA showed higher similarity between T1 and T2 at 24 h and between the control and T1 at 48 h. Overall, these results suggest that addition of L. mucosae and cell-free supernatant during the in vitro fermentation of dried brewers grain increases the VFA production, but has no effect on digestibility. The addition of L. mucosae can also increase the total bacterial population, but has no significant effect on the total microbial diversity. However, inoculation of the bacterium may increase $CH_4$ and $CO_2$ in vitro.

Isolation and characterization of a novel gossypol-degrading bacteria Bacillus subtilis strain Rumen Bacillus Subtilis

  • Zhang, Yunhua;Zhang, Zhengyou;Dai, Li;Liu, Ying;Cheng, Maoji;Chen, Lijuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.63-70
    • /
    • 2018
  • Objective: The aim of the study was to isolate gossypol-degrading bacteria and to assess its potential for gossypol degradation. Methods: Rumen liquid was collected from fistulated cows grazing the experimental pasture. Approximately 1 mL of the rumen liquid was spread onto basal medium plates containing 2 g/L gossypol as the only source of carbon and was then cultured at $39^{\circ}C$ to isolate gossypol-degrading bacteria. The isolated colonies were cultured for 6 h and then their size and shape observed by microscope and scanning electron microscope. The 16S rRNA gene of isolated colonies was sequenced and aligned using National Center for Biotechnology Information-Basic Local Alignment Search Tool. The various fermentation conditions, initial pH, incubation temperature, inoculum level and fermentationperiod were analyzed in cottonseed meal (CSM). The crude protein (CP), total gossypol (TG), and free gossypol (FG) were determined in CSM after fermentation with isolated strain at $39^{\circ}C$ for 72 h. Results: Screening results showed that a single bacterial isolate, named Rumen Bacillus Subtilis (RBS), could use gossypol as a carbon source. The bacterium was identified by 16S rDNA sequencing as being 98% homologous to the sequence of Bacillus subtilis strain GH38. The optimum fermentation conditions were found to be 72 h, $39^{\circ}C$, pH 6.5, moisture 50%, inoculum level $10^7cell/g$. In the optimum fermentation conditions, the FG and TG content in fermented CSM decreased 78.86% and 49% relative to the control. The content of CP and the essential amino acids of the fermented CSM increased respectively, compared with the control. Conclusion: The isolation of a gossypol-degrading bacterium from the cow rumen is of great importance for gossypol biodegradation and may be a valuable potential source for gossypol-degradation of CSM.

Prevalence of fimA Genotypes of Porphyromonas gingivalis Strains in peri-implant sulcus (임플란트 주위 치주낭내의 Porphyromonas gingivalis 섬모유전형의 출현율)

  • Seo, Dong-Keon;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.4
    • /
    • pp.907-919
    • /
    • 2005
  • Porphyromonas gingivalis is a gram negative. black-pigmented anaerobe, associated with periodontitis & peri-implantitis. Fimbriae(fimA) of P. gingivalis are filamentous components on the cell surface and important in the colonization and invasion of periodontal tissue. But all P. gnigivalis strains don't have equal pathogenicity, inequality among strains originates from different fimA genotype. P. gnigivalis fimA gene encoding fimbrillin(structural subunit of fimbriae) has been classified into 5 genotypes(types I to V) based on the nucleotide sequences. In the present study, we examined the prevalence of these fimA genotypes in patients with dental implant and the relationship between prevalence of these genotypes and a condition of peri-implant tissue. Dental plaque specimens obtained from 189 peri-implant sulci of 97 patients with dental implants were analyzed by 16S rRNA fimA gene-directed PCR assay. P. gingivalis were detected in 86.2% of the alll samples. Among the P. gingivalis-positive samples, a significant difference in the occurrence of typeII was observed between test and the two control groups. In two control groups, typeII fimA were detected in 6.3%(PD<5mm/BOP-). 18.7%(PD<5mm/BOP+). In the test $group(PD{\geqq}5mm/BOP+)$, type II fimA genotype were detected most frequently in 50.0% . And a correlation between specific fimA types and peri-implantitis was found in $typeII(R^2=l.105)$. These results suggest that P. gingivalis strains that possess typeII fimA are gradually increased, as a condition of peri-implant tissue is getting complicated and are closely associated with peri-implant health status. We speculate that these organisms be involved in peri-implantitis