• Title/Summary/Keyword: korean traditional ceramics

Search Result 57, Processing Time 0.029 seconds

A Study of Cultural Products based on the Traditional Temple Culture (전통사찰문화를 기반으로 한 문화상품 현황에 관한 연구)

  • Kim, Sun-Young;Choi, Young-Soon
    • Fashion & Textile Research Journal
    • /
    • v.14 no.3
    • /
    • pp.363-370
    • /
    • 2012
  • This study is for the development of fashion cultural products that simultaneously evolved with the contemporary use of traditional temple culture in addition, it analyzed the cultural products available in the Korean market. Methodology, this study conducted a literature review and empirical research. We targeted the cultural products carried at twelve web-based shopping malls for Buddhist cultural products and six souvenir shops in Korean Buddhist temples to collect data on those products in order to analyze the items, design motives, materials, and price ranges. The study results showed that interior items represented the largest portion of the targeted goods, followed by accessories/sundries, clothing/fashion items, stationery, and tableware. The most commonly used design motive was lotuses, followed by the images of Buddha or Buddhist Goddesses and Dharma. The most common materials include fibers, jewelry (such as gold and silver), wood, metals, ceramics, paper, and plastic. The most active price range was between KRW10,000 and KRW50,000, followed by less than KRW10,000 and KRW100,000 to less than KRW500,000. This study discovered the potential for traditional temple culture to advance it further in a contemporary manner and indicated the need to develop a wide variety of cultural products and emphasize its global acceptance.

Effect of Al Alloy Content on Processing of Reaction-Bonded Al2O3 Ceramics Using Al Alloy Powder

  • Lee, Hyun-Kwuon
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.215-220
    • /
    • 2015
  • The effect of Al content on the processing of reaction-bonded $Al_2O_3$ (RBAO) ceramics using 40v/o ~ 80v/o Al-Zn-Mg alloy powder was studied in order to improve traditional RBAO ceramic processes that use ~ 40v/o pure Al powder. The influence of high Al content in starting $Al_2O_3$-Al alloy powder mixtures on its particulate characteristics, reaction-bonding, microstructure, physical and mechanical properties was revealed. Starting $Al_2O_3$-Al alloy powder mixtures with 40v/o ~ 80v/o Al alloy powder were milled, reaction-bonded, post-sintered, and characterized. With an increasing Al alloy content, the milling efficiency of Al alloy powder was lowered, resulting in a larger particle size after milling. However, in spite of the larger particle size of Al alloy powder, the oxidation, i.e., reaction-bonding, of the Al alloy was successfully completed via solid and liquid state oxidation, in which the activation energy of the oxidation was nearly the same regardless of Al alloy content. After reaction-bonding and post-sintering at $1600^{\circ}C$, RBAO ceramics from 80v/o Al alloy content showed a relative density of ~97% and a flexural strength of 251 MPa compared to ~ 96% and 353 MPa for RBAO ceramics from 40v/o Al alloy content, respectively. The lower flexural strength at 80v/o Al alloy content was due to the weak spinel phase that formed from Zn, Mg alloying elements in Al.

Electrical Properties of 0.77(Bi1/2Na1/2)TiO3-0.23SrTiO3 (BNST23)/PVDF-TrFE Composites (스마트 페인트 센서용 0.77(Bi1/2Na1/2)TiO3-0.23SrTiO3 (BNST23)/PVDF-TrFE 복합소재 제조 및 전기적 특성에 관한 연구)

  • Sung Jae Hyoung;Eun Seo Kang;Yubin Kang;Chae Ryeong Kim;Chang Won Ahn;Byeong Woo Kim;Jae-Shin Lee;Hyoung-Su Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.433-438
    • /
    • 2024
  • Piezoelectric ceramics play an important role in various electronic applications. However, traditional ceramics are difficult to be used in some complicated structures, due to their low flexibility and high brittleness. To solve this problem, this study prepared and investigated ceramic/polymer composites that can utilize a good flexibility of polymers. Polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) and 0.77(Bi1/2Na1/2)TiO3-0.23SrTiO3 (BNST23) ceramics were selected to fabricate the composites. Ceramic/polymer composites were prepared using various volume fractions of BNST23 ceramics. The distribution of piezoceramic particles in BNST23/PVDF-TrFE composites was investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The dielectric and piezoelectric properties of the composites were significantly influenced by the volume fraction of the piezoelectric ceramics. As a result, the highest piezoelectric constant (d33) of 56 pC/N was obtained in a composites with 70% volume fraction of BNST23 ceramics. Accordingly, it is expected that BNST23/PVDF-TrFE composites can be applied to various sensor applications.

Comparison of traditional and simplified methods for repairing CAD/CAM feldspathic ceramics

  • Carrabba, Michele;Vichi, Alessandro;Louca, Chris;Ferrari, Marco
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.4
    • /
    • pp.257-264
    • /
    • 2017
  • PURPOSE. To evaluate the adhesion to CAD/CAM feldspathic blocks by failure analysis and shear bond strength test (SBSt) of different restorative systems and different surface treatments, for purpose of moderate chipping repair. MATERIALS AND METHODS. A self-adhering flowable composite (Vertise Flow, Kerr) containing bi-functional phosphate monomers and a conventional flowable resin composite (Premise Flow, Kerr) applied with and without adhesive system (Optibond Solo Plus, Kerr) were combined with three different surface treatments (Hydrofluoric Acid Etching, Sandblasting, combination of both) for repairing feldspathic ceramics. Two commercial systems for ceramic repairing were tested as controls (Porcelain Repair Kit, Ultradent, and CoJet System, 3M). SBSt was performed and failure mode was evaluated using a digital microscope. A One-Way ANOVA (Tukey test for post hoc) was applied to the SBSt data and the Fisher's Exact Test was applied to the failure analysis data. RESULTS. The use of resin systems containing bi-functional phosphate monomers combined with hydrofluoric acid etching of the ceramic surface gave the highest values in terms of bond strength and of more favorable failure modalities. CONCLUSION. The simplified repairing method based on self-adhering flowable resin combined with the use of hydrofluoric acid etching showed high bond strength values and a favorable failure mode. Repairing of ceramic chipping with a self-adhering flowable resin associated with hydrofluoric acid etching showed high bond strength with a less time consuming and technique-sensitive procedure compared to standard procedure.

Reaction-Bonded Al2O3 Ceramics Using Oxidation of Al Alloy Powder

  • Lee, Hyun-Kwuon
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.236-242
    • /
    • 2014
  • Fabrication of reaction-bonded $Al_2O_3$ (RBAO) ceramics using Al-Zn-Mg alloy powder was studied in order to improve traditional RBAO ceramic processing using Al powder. The influence on reaction-bonding and microstructure, as well as on physical and mechanical properties, of the particulate characteristics of the $Al_2O_3$-Al alloy powder mixtures after milling, was revealed. Variation of the particulate characteristics of this $Al_2O_3$-Al alloy powder mixture with milling time was reported previously. To start, the $Al_2O_3$-Al alloy powder mixture was milled, reaction-bonded, post-sintered, and characterized. During reaction-bonding of the $Al_2O_3$-Al alloy powder mixture compacts, oxidation of the Al alloy took place in two stages, that is, there was solid- and liquid-state oxidation of the Al alloy. The solid-state oxidation exhibited strong dependence on the density of surface defects on the Al-alloy particles formed during milling. Higher milling efficiency resulted in less participation of the Al alloy in reaction-bonding. This was because of its consumption by chemical reactions during milling, and subsequent powder handling, and could be rather harmful in the case of over-milling. In contrast to very little dependence of oxidation of the Al alloy on its particle size after milling, the relative density, microstructure, and flexural strength were strongly dependent on particle size after milling (i.e., on milling efficiency). The relative density and 4-point flexural strength of the RBAO ceramics in this study were ~98% and ~365 MPa, respectively, after post-sintering at $1,600^{\circ}C$.

HVOF Thermal Spray Coating of WC-Co for Durability Improvement of High Speed Spindle (초고속 스핀들의 내구성 향상을 위한 WC-Co 분말의 HVOF 용사 코팅)

  • Kim, K.S.;Baek, N.K.;Yoon, J.H.;Cho, T.Y.;Youn, S.J.;Oh, S.K.;Hwang, S.Y.;Chun, H.G.
    • Journal of Surface Science and Engineering
    • /
    • v.39 no.4
    • /
    • pp.179-189
    • /
    • 2006
  • High velocity oxygen fuel(HVOF) thermal spray coating of WC-Co powder is one of the most promising candidate for the replacement of the traditional hard chrome plating and ceramics coating because of the environmental problem of the very toxic $Cr^{6+}$ known as carcinogen and the brittleness of ceramics coating. WC-Co micron and nano powder were coated by HVOF thermal spraying method for the study of durability improvement of the high speed spindle. Coatings were planned by Taguchi program for the four spray parameters of spray distance, flow rates of hydrogen, oxygen and powder feed rate. Optimal coating process was obtained by the studies of coating properties such as porosity, surface roughness, micro hardness, and micro structure. WC-Co micron and nano powder were coated on the Inconel 718 substrate by the optimal coating process obtained in this study. The wear behaviors were studied by the sliding wear tester at room temperature and at an elevated temperature of $500^{\circ}C$ for the application to high speed spindle. Sliding wear test was carried out for four most promising hard coatings of chrome coating, ceramics coatings such as $A1_2O_3,\;Cr_2O_3$ and HVOF Co-alloy T800 for the comparison of their wear behaviors. HVOF WC-Co coating was better than other coatings showing highest micro hardness of 1400 Hv and comparable friction coefficients with others. HVOF WC-Co coating is a strong candidate for the replacement of the traditional hard chrome plating for the high speed spindle.

Literature review on the experimental method and interpretation of the edge chipping test (ECT) (Edge chipping test (ECT)의 실험방법과 해석에 관한 문헌고찰)

  • Song, Min-Gyu;Ko, Kyung-Ho;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.1
    • /
    • pp.9-18
    • /
    • 2022
  • In vitro studies are essential to predict the clinical performance of ceramic widely used as restorative materials. Traditional experiments such as fracture toughness and flexural strength have been used to evaluate the properties of brittle ceramics. However, these experiments have a limitation that the load conditions, failure patterns, and load values at which failure occurs are not similar to human occlusal force ranges or clinical failures. On the other hand, the edge chipping test (ECT), which was recently introduced to study chipping fracture of ceramics, has similar failure patterns to clinical trials. In addition, the failure loads from ECT were similar to human occlusal force. ECT can be usefully used in the study of ceramic properties. In this literature review, a more clinically meaningful experimental study of ceramics by examining the meaning and limitations of traditional ceramic failure tests and comparing them with ECT.

Development of Expert System for the Diagnostic of NTM Decision-Making (특수가공법 의사결정 진단 전문가 시스템 개발)

  • Yoon, Moon-Chul;Cho, Hyun-Deog
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.94-100
    • /
    • 2010
  • Nowadays, several nontraditional machining(NTM) processes are widely used to machine a complex and accurate shape part of hard materials, such as titanium, ceramics, high strength temperature resistant and refractory materials which are difficult to machine and having high strength, hardness, toughness. Machining of these complex shapes in such materials by traditional machining processes are very difficult. The NTM processes is important in the areas of micro- and nano scale machining, where high accuracy and superior surface characteristics are required, which can only be achieved using these NTM processes. So, for effective selection of different NTM processes, careful decision making for a given NTM application is often necessary. An appropriate NTM process for a given material and shape condition is very difficult for the novice engineers. In this paper, an expert system based on an analytic network process(ANP) is suggested for a best selection of NTM process in a NTM application considering an prior interdependency effect among various factors.

A Study on the Grinding Characteristics of Porous Ceramics (Porous Ceramics의 연삭특성에 관한 연구)

  • Park, Hwi-Keun;Park, Se-Jin;Choi, Yun-Seo;Hwang, In-Hwan;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.165-170
    • /
    • 2012
  • The resin bonded diamond wheel is used to grind the difficult-to-cut materials. Traditionally, the resin bonded diamond wheel is manufactured without any pores due to the characteristics of resin bond. In this study, two porous resin bonded diamond wheel were made and the grinding characteristics were compared with traditional nonporous ones. The experimental results indicate that the porous resin bond diamond wheel require less grinding forces and powers.

Measurement of High Temperature Dielectric Property at Microwave Frequency Using Cavity Perturbation Method (Cavity Perturbation Method를 이용한 마이크로파 주파수대의 고온 유전특성 측정 연구)

  • Kim, Dong-Eun;Jung, Jin-Ho;Lee, Sung-Min;Kim, Hyung-Tae
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.455-461
    • /
    • 2006
  • High temperature dielectric constants of the various ceramic materials have been measured using cavity perturbation method. The measurements were applied to refractory, traditional and fine ceramic powder compacts from room temperature to $1200^{\circ}C$. Calibration constant in the equation suggested by Hutcheon et al., was determined from the dielectric constants of reference specimen (teflon and alumina) at room temperature. From these results, informations on the refectory materials were obtained for the microwave kiln design and understanding of the microwave heating effects of ceramics have been improved.