• 제목/요약/키워드: knowledge networks

검색결과 750건 처리시간 0.028초

연명의료 관련 신문 기사의 텍스트네트워크분석 (Text Network Analysis of Newspaper Articles on Life-sustaining Treatments)

  • 박은준;안대웅;박찬숙
    • 지역사회간호학회지
    • /
    • 제29권2호
    • /
    • pp.244-256
    • /
    • 2018
  • Purpose: This study tried to understand discourses of life-sustaining treatments in general daily and healthcare newspapers. Methods: A text-network analysis was conducted using the NetMiner program. Firstly, 572 articles from 11 daily newspapers and 258 articles from 8 healthcare newspapers were collected, which were published from August 2013 to October 2016. Secondly, keywords (semantic morphemes) were extracted from the articles and rearranged by removing stop-words, refining similar words, excluding non-relevant words, and defining meaningful phrases. Finally, co-occurrence matrices of the keywords with a frequency of 30 times or higher were developed and statistical measures-indices of degree and betweenness centrality, ego-networks, and clustering-were obtained. Results: In the general daily and healthcare newspapers, the top eight core keywords were common: "patients," "death," "LST (life-sustaining treatments)," "hospice palliative care," "hospitals," "family," "opinion," and "withdrawal." There were also common subtopics shared by the general daily and healthcare newspapers: withdrawal of LST, hospice palliative care, National Bioethics Review Committee, and self-determination and proxy decision of patients and family. Additionally, the general daily newspapers included diverse social interest or events like well-dying, euthanasia, and the death of farmer Baek Nam-ki, whereas the healthcare newspapers discussed problems of the relevant laws, and insufficient infrastructure and low reimbursement for hospice-palliative care. Conclusion: The discourse that withdrawal of futile LST should be allowed according to the patient's will was consistent in the newspapers. Given that newspaper articles influence knowledge and attitudes of the public, RNs are recommended to participate actively in public communication on LST.

A Neural Network and Kalman Filter Hybrid Approach for GPS/INS Integration

  • Wang, Jianguo Jack;Wang, Jinling;Sinclair, David;Watts, Leo
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.277-282
    • /
    • 2006
  • It is well known that Kalman filtering is an optimal real-time data fusion method for GPS/INS integration. However, it has some limitations in terms of stability, adaptability and observability. A Kalman filter can perform optimally only when its dynamic model is correctly defined and the noise statistics for the measurement and process are completely known. It is found that estimated Kalman filter states could be influenced by several factors, including vehicle dynamic variations, filter tuning results, and environment changes, etc., which are difficult to model. Neural networks can map input-output relationships without apriori knowledge about them; hence a proper designed neural network is capable of learning and extracting these complex relationships with enough training. This paper presents a GPS/INS integrated system that combines Kalman filtering and neural network algorithms to improve navigation solutions during GPS outages. An Extended Kalman filter estimates INS measurement errors, plus position, velocity and attitude errors etc. Kalman filter states, and gives precise navigation solutions while GPS signals are available. At the same time, a multi-layer neural network is trained to map the vehicle dynamics with corresponding Kalman filter states, at the same rate of measurement update. After the output of the neural network meets a similarity threshold, it can be used to correct INS measurements when no GPS measurements are available. Selecting suitable inputs and outputs of the neural network is critical for this hybrid method. Detailed analysis unveils that some Kalman filter states are highly correlated with vehicle dynamic variations. The filter states that heavily impact system navigation solutions are selected as the neural network outputs. The principle of this hybrid method and the neural network design are presented. Field test data are processed to evaluate the performance of the proposed method.

  • PDF

가중치를 갖는 FMM신경망과 패턴분류를 위한 특징분석 기법 (A Weighted FMM Neural Network and Feature Analysis Technique for Pattern Classification)

  • 김호준;양현승
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권1호
    • /
    • pp.1-9
    • /
    • 2005
  • 본 논문에서는 패턴 분류를 위한 수정된 퍼지 최대최소 신경망 모델을 제안하고 그의 유용성을 고찰한다. 이를 위하여 하이퍼박스 내에서 각 특징들에 대하여 가중치 요소론 갖는 새로운 하이퍼큐브 소속함수를 정의한다. 이 가중치 요소는 분류과정에서 임의의 클래스에 대한 각 특징의 상대적인 기여도를 반영한다. 본 연구에서는 이를 위하여 새롭게 정의된 하이퍼박스 생성, 확장 및 축소의 3단계로 이루어지는 학습 방법론을 소개한다. 또한 제안된 모델을 기반으로 하여 학습된 분류기로부터 하이퍼박스 소속함수와 연결가중치를 사용하여 주어진 클래스에 대한 특징의 연관도를 산출하는 형태의 이른바 특징 분석 기법을 제안한다. 이를 위하여 세부적으로 각 특징에 대하여 연관도 척도와 퍼지 소속함수간의 유사도 척도를 정의한다. 또한 실제 패턴 분류문제에 적용한 실험결과를 통하여 제안된 이론의 타당성을 평가한다.

Cooperation-Aware VANET Clouds: Providing Secure Cloud Services to Vehicular Ad Hoc Networks

  • Hussain, Rasheed;Oh, Heekuck
    • Journal of Information Processing Systems
    • /
    • 제10권1호
    • /
    • pp.103-118
    • /
    • 2014
  • Over the last couple of years, traditional VANET (Vehicular Ad Hoc NETwork) evolved into VANET-based clouds. From the VANET standpoint, applications became richer by virtue of the boom in automotive telematics and infotainment technologies. Nevertheless, the research community and industries are concerned about the under-utilization of rich computation, communication, and storage resources in middle and high-end vehicles. This phenomenon became the driving force for the birth of VANET-based clouds. In this paper, we envision a novel application layer of VANET-based clouds based on the cooperation of the moving cars on the road, called CaaS (Cooperation as a Service). CaaS is divided into TIaaS (Traffic Information as a Service), WaaS (Warning as a Service), and IfaaS (Infotainment as a Service). Note, however, that this work focuses only on TIaaS and WaaS. TIaaS provides vehicular nodes, more precisely subscribers, with the fine-grained traffic information constructed by CDM (Cloud Decision Module) as a result of the cooperation of the vehicles on the roads in the form of mobility vectors. On the other hand, WaaS provides subscribers with potential warning messages in case of hazard situations on the road. Communication between the cloud infrastructure and the vehicles is done through GTs (Gateway Terminals), whereas GTs are physically realized through RSUs (Road-Side Units) and vehicles with 4G Internet access. These GTs forward the coarse-grained cooperation from vehicles to cloud and fine-grained traffic information and warnings from cloud to vehicles (subscribers) in a secure, privacy-aware fashion. In our proposed scheme, privacy is conditionally preserved wherein the location and the identity of the cooperators are preserved by leveraging the modified location-based encryption and, in case of any dispute, the node is subject to revocation. To the best of our knowledge, our proposed scheme is the first effort to offshore the extended traffic view construction function and warning messages dissemination function to the cloud.

GIS를 이용한 환경오염의 예측 모델 (GIS- Based Predictive Model for Measure of Environmental Pollutant)

  • 이자원
    • 한국지역지리학회지
    • /
    • 제14권2호
    • /
    • pp.114-125
    • /
    • 2008
  • 본 연구는 GIS를 사용하여 메사추세츠 동부의 보스턴시에 위치한 넷폰셋 강 유역의 수질 오염 정도를 측정하기 위한 것이다. 관련된 오염물질로써 CDOM을 축출하여 지표면의 유수가 다양한 토지이용과 연계되어 바닷물로 흘러들어가는 과정을 예측하고 이를 모형화하게 된다. CDOM의 축출과 분석은 관련학과의 도움을 받아 그 결과를 산출하고, 이를 GIS의 공간분석 기법을 이용하여 지역과 지형적인 특성에 따라 오염물질이 전해지면서 토지이용에 어떠한 변화가 생기는지를 관측하게 된다. 수계의 형성과 강의 흐름, 그리고 토지이용 자료가 연구를 위해 분석 자료로 사용되었고, ArcGIS 9.2를 사용, 공간분석 기법을 통해 하위 분수계와 유동점, 토지이용 구획을 산출하게 된다. 이는 GIS 기법이 지형분석과 오염물질의 이동을 분석하는데 어떻게 활용될 수 있는지를 고찰하는 것으로써 의미있는 연구가 될 것이다.

  • PDF

혁신클러스터의 성공 요인에 관한 연구 : 판교테크노밸리 사례를 중심으로 (A Study on the Success Factors of Innovation Cluster: A Case of the Pangyo Techno Valley in South Korea)

  • 정기덕;임종빈;정선양
    • 기술혁신학회지
    • /
    • 제20권4호
    • /
    • pp.970-988
    • /
    • 2017
  • 혁신클러스터는 전 세계적으로 지역의 경쟁력을 높이는 주요 도구로 활용되고 있다. 한국도 정책적으로 다양한 형태의 혁신클러스터를 조성 및 육성하고 있다. 하지만 성공적인 혁신클러스터 육성을 위한 체계적인 분석은 활발하지 않은 실정이다. 본 연구에서는 문헌연구를 통해 혁신클러스터의 성공요인을 도출하고, 이를 활용하여 분석을 위한 프레임워크를 제시하였다. 또한 제시한 프레임워크에 따라 판교테크노밸리를 대상으로 사례연구를 하였다. 분석 결과 성공적인 혁신클러스터를 위해서는 혁신지향적인 환경, 지속적인 정책적 지원, 지식 네트워크의 활성화, 혁신성과의 환류가 중요한 것으로 나타났다.

데이터 스트림에서 가중치 지지도 기반 빈발 패턴 추출 방법 (An Efficient Method for Mining Frequent Patterns based on Weighted Support over Data Streams)

  • 김영희;김원영;김응모
    • 한국산학기술학회논문지
    • /
    • 제10권8호
    • /
    • pp.1998-2004
    • /
    • 2009
  • 다양한 저장 장치의 발달과 네트워크의 발전은 대용량의 데이터를 연속적으로 빠르게 생성한다. 데이터 스트림에서의 데이터 마이닝은 처리 시간 및 메모리 사용에 제한적이다. 또한 생성된 데이터를 한 번의 스캔으로 유용한 패턴을 발견할 수 있어야 하고 정보 변화 가능성이 큰 데이터 속성을 갖는 경우 최근의 정보를 반영한 빠른 분석이 가능해야 한다. 기존의 지지도 기반 마이닝 방법들은 일정 기간 동안 미리 정의된 지지도 이상의 빈발 항목에 대하여만 고려하므로 중요도가 높은 항목들을 간과하는 문제점을 가지고 있다. 본 논문에서는 시간의 변화에 따른 가변성을 고려하여 가중치 지지도를 갖는 데이터 항목들에 대하여 보다 의미 있는 정보를 제공하기 위한 효율적인 빈발패턴 추출 방법을 제안하고자 한다. 제안된 WSFI-Mine(Weighted Support Frequent Itemsets Mine) 방법은 DCT(Data Stream Closed Pattern Tree) 데이터 구조를 이용하여 패쇄 빈발 항목을 탐사한다. 제안된 알고리즘은 DSM-FI와 THUI-Mine 알고리즘과 지지도 변화에 따른 성능을 비교하였고 그 결과 비교 알고리즘 보다 수행 시간이 우수함을 보였고, 빈발 항목을 생성하는 후보 항목의 수를 줄이므로 메모리 사용량을 효율적으로 사용할 수 있음을 보였다.

대용량 데이터 처리를 위한 하이브리드형 클러스터링 기법 (A Hybrid Clustering Technique for Processing Large Data)

  • 김만선;이상용
    • 정보처리학회논문지B
    • /
    • 제10B권1호
    • /
    • pp.33-40
    • /
    • 2003
  • 데이터 마이닝은 지식발견 과정에서 중요한 역할을 수행하며, 여러 데이터 마이닝의 알고리즘들은 특정의 목적을 위하여 선택될 수 있다. 대부분의 전통적인 계층적 클러스터링 방법은 적은 양의 데이터 집합을 처리하는데 적합하여 제한된 리소스와 부족한 효율성으로 인하여 대용량의 데이터 집합을 다루기가 곤란하다. 본 연구에서는 대용량의 데이터에 적용되어 알려지지 않은 패턴을 발견할 수 있는 하이브리드형 신경망 클러스터링 기법의 PPC(Pre-Post Clustrering) 기법을 제안한다. PPC 기법은 인공지능적 방법인 자기조직화지도(SOM)와 통계적 방법인 계층적 클러스터링을 결합하여 두 과정에서는 군집의 내부적 특징을 나타내는 응집거리와 군집간의 외부적 거리를 나타내는 인접거리에 따라 유사도를 측정한다. 최종적으로 PPC 기법은 측정된 유사도를 이용하여 대용량 데이터 집합을 군집화한다. PPC 기법은 UCI Repository 데이터를 이용하여 실험해 본 결과, 다른 클러스터링 기법들 보다 우수한 응집도를 보였다.

워크플로우 기반 인적 자원 소속성 분석을 위한 업무-수행자 이분 행렬 생성 알고리즘 (An Activity-Performer Bipartite Matrix Generation Algorithm for Analyzing Workflow-supported Human-Resource Affiliations)

  • 안현;김광훈
    • 인터넷정보학회논문지
    • /
    • 제14권2호
    • /
    • pp.25-34
    • /
    • 2013
  • 본 논문에서는 워크플로우 기반 인적 자원의 소속성 분석을 위한 업무-수행자 이분 행렬 생성 알고리즘을 제안한다. 워크플로우 기반 인적 자원은 워크플로우 관리 시스템에 의해 관리되는 조직의 모든 수행자들을 말하며, 워크플로우 모델의 실행 과정에서 특정 업무 집합에 참여하게 된다. 이러한 워크플로우 모델에 정의된 수행자들과 업무들과의 소속성을 나타내는 소셜 네트워크를 업무-수행자 소속성 네트워크라 정의하였으며, 본 논문에서 제안하는 알고리즘은 워크플로우 모델로부터 발견된 업무-수행자 소속성 네트워크 모델(APANM)에 대한 이분 행렬을 생성하기 위한 알고리즘이다. 결론적으로, 알고리즘에 의해 생성된 업무-수행자 이분 행렬은 중심성(centrality), 밀집도(density), 상관 관계(correlation)와 같은 다양한 소셜 네트워크 관련 속성들을 분석하는데 적용될 수 있으며, 이를 통해 워크플로우 기반 인적 자원의 소속성에 대한 유용한 지식을 획득할 수 있다.

The history of high intensity rainfall estimation methods in New Zealand and the latest High Intensity Rainfall Design System (HIRDS.V3)

  • Horrell, Graeme;Pearson, Charles
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.16-16
    • /
    • 2011
  • Statistics of extreme rainfall play a vital role in engineering practice from the perspective of mitigation and protection of infrastructure and human life from flooding. While flood frequency assessments, based on river flood flow data are preferred, the analysis of rainfall data is often more convenient due to the finer spatial nature of rainfall recording networks, often with longer records, and potentially more easily transferable from site to site. The rainfall frequency analysis as a design tool has developed over the years in New Zealand from Seelye's daily rainfall frequency maps in 1947 to Thompson's web based tool in 2010. This paper will present a history of the development of New Zealand rainfall frequency analysis methods, and the details of the latest method, so that comparisons may in future be made with the development of Korean methods. One of the main findings in the development of methods was new knowledge on the distribution of New Zealand rainfall extremes. The High Intensity Rainfall Design System (HIRDS.V3) method (Thompson, 2011) is based upon a regional rainfall frequency analysis with the following assumptions: $\bullet$ An "index flood" rainfall regional frequency method, using the median annual maximum rainfall as the indexing variable. $\bullet$ A regional dimensionless growth curve based on the Generalised Extreme Value (GEV), and using goodness of fit test for the GEV, Gumbel (EV1), and Generalised Logistic (GLO) distributions. $\bullet$ Mapping of median annual maximum rainfall and parameters of the regional growth curves, using thin-plate smoothing splines, a $2km\times2km$ grid, L moments statistics, 10 durations from 10 minutes to 72 hours, and a maximum Average Recurrence Interval of 100 years.

  • PDF