• 제목/요약/키워드: knockout mutant

검색결과 59건 처리시간 0.028초

Selective production of red azaphilone pigments in a Monascus purpureus mppDEG deletion mutant

  • Balakrishnan, Bijinu;Lim, Yoon Ji;Hwang, Seok Hyun;Lee, Doh Won;Park, Si-Hyung;Kwon, Hyung-Jin
    • Journal of Applied Biological Chemistry
    • /
    • 제60권3호
    • /
    • pp.249-256
    • /
    • 2017
  • The Monascus azaphilone (MAz) pigment is a well-known food colorant that has yellow, orange and red components. The structures of the yellow and orange MAz differ by two hydride reductions, with yellow MAz being the reduced form. Orange MAz can be non-enzymatically converted to red MAz in the presence of amine derivatives. It was previously demonstrated that mppE and mppG are involved in the biosynthesis of yellow and orange MAz, respectively. However, ${\Delta}mppE$ and ${\Delta}mppG$ knockout mutants maintained residual production of yellow and orange MAz, respectively. In this study, we deleted the region encompassing mppD, mppE and mppG in M. purpureus and compared the phenotype of the resulting mutant (${\Delta}mppDEG$) with that of an mppD knockout mutant (${\Delta}mppD$). It was previously reported that the ${\Delta}mppD$ strain retained the ability to produce MAz but at approximately 10% of the level observed in the wildtype strain. A chemical analysis demonstrated that the ${\Delta}mppDEG$ strain was still capable of producing both yellow and orange MAz, suggesting the presence of minor MAz route(s) not involving mppE or mppG. Unexpectedly, the ${\Delta}mppDEG$ strain was observed to accumulate fast-eluting pigments in a reverse phase high-performance liquid chromatography analysis. A LC-MS analysis identified these pigments as ethanolamine derivatives of red MAz, which had been previously identified in an mppE knockout mutant that produces high amounts of orange MAz. Although the underlying mechanism is largely unknown, this study has yielded an M. purpureus strain that selectively accumulates red MAz.

Differential Effects of Two Period Genes on the Physiology and Proteomic Profiles of Mouse Anterior Tibialis Muscles

  • Bae, Kiho;Lee, Kisoo;Seo, Younguk;Lee, Haesang;Kim, Dongyong;Choi, Inho
    • Molecules and Cells
    • /
    • 제22권3호
    • /
    • pp.275-284
    • /
    • 2006
  • The molecular components that generate and maintain circadian rhythms of physiology and behavior in mammals are present both in the brain (suprachiasmatic nucleus; SCN) and in peripheral tissues. Examination of mice with targeted disruptions of either mPer1 or mPer2 has shown that these two genes have key roles in the SCN circadian clock. Here we show that loss of the clock gene mPer2 affects forced locomotor performance in mice without altering muscle contractility. A proteomic analysis revealed that the anterior tibialis muscles of the mPer2 knockout mice had higher levels of glycolytic enzymes such as triose phosphate isomerase and enolase than those of either the wild type or mPer1 knockout mice. In addition, the level of expression of HSP90 in the mPer2 mutant mice was also significantly higher than in wildtype mice. These results suggest that the reduced locomotor endurance of the mPer2 knockout mice reflects a greater dependence on anaerobic metabolism under stress conditions, and that the two canonical clock genes, mPer1 and mPer2, play distinct roles in the physiology of skeletal muscle.

Pseudomonas sp. HK-6의 xenA 돌연변이체를 이용하여 RDX 폭약에 노출된 세포반응들의 통합적 분석 (Integrative analysis of cellular responses of Pseudomonas sp. HK-6 to explosive RDX using its xenA knockout mutant)

  • 이병욱;최문섭;석지원;오계헌
    • 미생물학회지
    • /
    • 제54권4호
    • /
    • pp.343-353
    • /
    • 2018
  • 이전 연구에서 우리는 RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) 분해세균 Pseudomonas sp. HK-6에서 xenobiotic reductase B를 암호화하는 xenB 유전자의 돌연변이 균주를 이용하여 RDX 스트레스에 대한 xenB 유전자의 역할에 관하여 연구를 보고하였다[Lee et al. (2015) Curr. Microbiol. 70(1): 119-127]. 본 연구에서는 Pseudomonas sp. HK-6 xenA 돌연변이 균주로 연구 범위를 확대하여 RDX 스트레스 조건에서 세포반응과 프로테옴 프로필의 변화를 분석하였다. RDX 첨가 배지에서 xenA 돌연변이 균주는 야생균주와 비교하여 RDX를 약 2배 정도 느리게 분해하였으며, RDX 스트레스 하에서 xenA 돌연변이 균주의 생장률과 생존율은 야생균주와 비교하여 낮았다. RDX 스트레스에 의한 심한 형태적 손상이 xenA 돌연변이 균주의 세포 표면에 발생하는 것이 주사전자현미경을 통해서 확인되었다. RDX 스트레스 하에서 야생균주에서 발현된 충격단백질인 DnaK 및 GroEL의 양은 배양 초기 혹은 상대적으로 낮은 RDX 농도에서는 증가하였으나, 배양시간이 길어지거나 높은 RDX 농도에서는 다소 감소하였다. 그러나 xenA 돌연변이 균주에서는 DnaK와 GroEL의 발현양은 RDX 농도가 증가함에 따라 점차 감소되었다. RT-qPCR에 의해 측정된 야생균주에서 dnaA와 groEL의 전사 수준은 RDX 스트레스가 증가된 상태에서 잘 유지되었으나, xenA 돌연변이 균주에서는 점차 감소되어 결국에는 소멸되었다. RDX 스트레스에서 xenA의 돌연변이에 의한 프로테옴 프로필의 변화를 2-DE PAGE를 통해서 관찰한 결과에 따르면 27개 단백질이 감소하고 3개가 증가한 것으로 나타났다. 이들 결과로 보아, 정상적인 xenA 유전자는 RDX 스트레스 하에서 세포의 온전한 형태 유지와 효율적인 RDX 분해 과정을 수행하기 위해서 필요하다는 것을 의미하였다.

Myostatin gene knockout mediated by Cas9-D10A nickase in chicken DF1 cells without off-target effect

  • Lee, Jeong Hyo;Kim, Si Won;Park, Tae Sub
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권5호
    • /
    • pp.743-748
    • /
    • 2017
  • Objective: Based on rapid advancement of genetic modification techniques, genomic editing is expected to become the most efficient tool for improvement of economic traits in livestock as well as poultry. In this study, we examined and verified the nickase of mutated CRISPR-associated protein 9 (Cas9) to modulate the specific target gene in chicken DF1 cells. Methods: Chicken myostatin which inhibits muscle cell growth and differentiation during myogenesis was targeted to be deleted and mutated by the Cas9-D10A nickase. After co-transfection of the nickase expression vector with green fluorescent gene (GFP) gene and targeted multiplex guide RNAs (gRNAs), the GFP-positive cells were sorted out by fluorescence-activated cell sorting procedure. Results: Through the genotyping analysis of the knockout cells, the mutant induction efficiency was 100% in the targeted site. Number of the deleted nucleotides ranged from 2 to 39 nucleotide deletion. There was no phenotypic difference between regular cells and knockout cells. However, myostatin protein was not apparently detected in the knockout cells by Western blotting. Additionally, six off-target sites were predicted and analyzed but any non-specific mutation in the off-target sites was not observed. Conclusion: The knockout technical platform with the nickase and multiplex gRNAs can be efficiently and stablely applied to functional genomics study in poultry and finally adapted to generate the knockout poultry for agribio industry.

Disruption of the Myostatin Gene in Porcine Primary Fibroblasts and Embryos Using Zinc-Finger Nucleases

  • Huang, Xian-Ju;Zhang, Hong-Xiao;Wang, Huili;Xiong, Kai;Qin, Ling;Liu, Honglin
    • Molecules and Cells
    • /
    • 제37권4호
    • /
    • pp.302-306
    • /
    • 2014
  • Myostatin represses muscle growth by negatively regulating the number and size of muscle fibers. Myostatin loss-of-function can result in the double-muscling phenotype and increased muscle mass. Thus, knockout of myostatin gene could improve the quality of meat from mammals. In the present study, zinc finger nucleases, a useful tool for generating gene knockout animals, were designed to target exon 1 of the myostatin gene. The designed ZFNs were introduced into porcine primary fibroblasts and early implantation embryos via electroporation and microinjection, respectively. Mutations around the ZFNs target site were detected in both primary fibroblasts and blastocysts. The proportion of mutant fibroblast cells and blastocyst was 4.81% and 5.31%, respectively. Thus, ZFNs can be used to knockout myostatin in porcine primary fibroblasts and early implantation embryos.

Photodynamic Therapy에 의한 산화적 스트레스 조건에서 Helicobacter pylori의 Fur 단백질의 역할 (The Role of Helicobacter pylori's Fur Protein in the Oxidative Stress Induced by Photodynamic Therapy)

  • 박유나;김지훈;최성숙
    • 미생물학회지
    • /
    • 제47권2호
    • /
    • pp.124-129
    • /
    • 2011
  • Helicobacter pylori균의 ferric uptake regulator (Fur) 단백질의 산화적 손상에 대한 역할을 연구하였다. H. pylori균의 fur 유전자를 제거한 돌연변이체를 만들고 wild type H. pylori균과 돌연변이체 균의 산화적 스트레스에 대한 반응을 비교하였다. 산화적 스트레스는 methylene blue와 660 nm 파장의 빛을 이용하는 광역학적 치료방법으로 유도하였다. 산화적 스트레스를 가한 실험조건에서 wt H. pylori와 돌연변이체의 생존력, DNA 손상의 정도를 비교 검토하였다. 그 결과 fur 유전자가 제거된 돌연변이체의 생균수가 wt에 비해 10,000배 가량 감소한 것을 알 수 있었으며 DNA의 산화적 손상의 marker인 8-hydroxy-2-deoxyguanosine (8-OHdG)의 양도 fur 유전자 제거된 돌연변이에서 wild type에 비해 3배 정도 더 생성됨을 확인하였다. 따라서 본 실험결과 H. pylori균의 fur 유전자가 PDT법으로 유도한 산화적 스트레스에 방어 기작을 하는 것으로 사료된다.

Inactivation of the genes involved in histone H3-lysine 4 methylation abates the biosynthesis of pigment azaphilone in Monascus purpureus

  • Balakrishnan, Bijinu;Lim, Yoon Ji;Suh, Jae-Won;Kwon, Hyung-Jin
    • Journal of Applied Biological Chemistry
    • /
    • 제62권2호
    • /
    • pp.157-165
    • /
    • 2019
  • Di- and tri-methylation of lysine 4 on histone H3 (H3K4me2 and H3K4me3, respectively) are epigenetic markers of active genes. Complex associated with Set1 (COMPASS) mediates these H3K4 methylations. The involvement of COMPASS activity in secondary metabolite (SM) biosynthesis was first demonstrated with an Aspergillus nidulans cclA knockout mutant. The cclA knockout induced the transcription of two cryptic SM biosynthetic gene clusters, leading to the production of the cognate SM. Monascus spp. are filamentous fungi that have been used for food fermentation in eastern Asia, and the pigment Monascus azaphione (MAz) is their main SM. Monascus highly produces MAz, implying that the cognate biosynthetic genes are highly active in transcription. In the present study, we examined how COMPASS activity modulates MAz biosynthesis by inactivating Monascus purpureus cclA (Mp-cclA) and swd1 (Mp-swd1). For both ${\Delta}Mp-cclA$ and ${\Delta}Mp-swd1$, a reduction in MAz production, accompanied by an abated cell growth, was observed. Suppression of MAz production was more effective in an agar culture than in the submerged liquid culture. The fidelity of the ${\Delta}Mp-swd1$ phenotypes was verified by restoring the WT-like phenotypes in a reversion recombinant mutant, namely, trpCp: Mp-swd1, that was generated from the ${\Delta}Mp-swd1$ mutant. Real-time quantitative Polymerase chain reaction analysis indicated that the transcription of MAz biosynthetic genes was repressed in the ${\Delta}Mp-swd1$ mutant. This study demonstrated that MAz biosynthesis is under the control of COMPASS activity and that the extent of this regulation is dependent on growth conditions.

The CsSTE50 Adaptor Protein in Mitogen-Activated Protein Kinase Cascades Is Essential for Pepper Anthracnose Disease of Colletotrichum scovillei

  • Jong-Hwan, Shin;Byung-Seong, Park;Kyoung Su, Kim
    • The Plant Pathology Journal
    • /
    • 제38권6호
    • /
    • pp.593-602
    • /
    • 2022
  • Anthracnose, caused by the ascomycete fungus Colletotrichum scovillei, is a destructive disease in pepper. The fungus germinates and develops an infection structure called an appressorium on the plant surface. Several signaling cascades, including cAMP-mediated signaling and mitogen-activated protein kinase (MAPK) cascades, are involved in fungal development and pathogenicity in plant pathogenic fungi, but this has not been well studied in the fruit-infecting fungus C. scovillei. Ste50 is an adaptor protein interacting with multiple upstream components to activate the MAPK cascades. Here, we characterized the CsSTE50 gene of C. scovillei, a homolog of Magnaporthe oryzae MST50 that functions in MAPK cascades, by gene knockout. The knockout mutant ΔCsste50 had pleiotropic phenotypes in development and pathogenicity. Compared with the wild-type, the mutants grew faster and produced more conidia on regular agar but were more sensitive to osmotic stress. On artificial and plant surfaces, the conidia of the mutant showed significantly reduced germination and failed to form appressoria. The mutant was completely non-pathogenic on pepper fruits with or without wounds, indicating that pre-penetration and invasive growth were both defective in the mutant. Our results show that the adaptor protein CsSTE50 plays a role in vegetative growth, conidiation, germination, appressorium formation, and pathogenicity in C. scovillei.

Construction of an Efficient Mutant Strain of Trichosporonoides oedocephalis with HOG1 Gene Deletion for Production of Erythritol

  • Li, Liangzhi;Yang, Tianyi;Guo, Weiqiang;Ju, Xin;Hu, Cuiying;Tang, Bingyu;Fu, Jiaolong;Gu, Jingsheng;Zhang, Haiyang
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권4호
    • /
    • pp.700-709
    • /
    • 2016
  • The mitogen-activated protein kinase HOG1 (high-osmolarity glycerol response pathway) plays a crucial role in the response of yeast to hyperosmotic shock. Trichosporonoides oedocephalis produces large amounts of polyols (e.g., erythritol and glycerol) in a culture medium. However, the effects of HOG1 gene knockout and environmental stress on the production of these polyols have not yet been studied. In this study, a To-HOG1 null mutation was constructed in T. oedocephalis using the loxP-Kan-loxP/Cre system as replacement of the targeted genes, and the resultant mutants showed much smaller colonies than the wild-type controls. Interestingly, compared with the wild-type strains, the results of shake-flask culture showed that To-HOG1 null mutation increased erythritol production by 1.44-fold while decreasing glycerol production by 71.23%. In addition, this study investigated the effects of citric acid stress on the T. oedocephalis HOG1 null mutants and the wild-type strain. When the supplementation of citric acid in the fermentation medium was controlled at 0.3% (w/v), the concentration of erythritol produced from the wild-type and To-HOG1 knockout mutant strains improved by 18.21% and 21.65%, respectively.