The Role of Helicobacter pylori's Fur Protein in the Oxidative Stress Induced by Photodynamic Therapy

Photodynamic Therapy에 의한 산화적 스트레스 조건에서 Helicobacter pylori의 Fur 단백질의 역할

  • Received : 2011.04.20
  • Accepted : 2011.06.15
  • Published : 2011.06.30

Abstract

The role of the ferric uptake regulator (Fur) of Helicobacter pylori in the oxidative stress was investigated in this study. A fur knockout mutant of H. pylori was constructed by replacing the fur gene with an aphA (kanamycin resistant marker) gene. Photodynamic therapy using methylene blue (MB) and 660 nm light was chosen to induce oxidative stress. The bactericidal effect of photodynamic therapy (PDT) was compared between wild type H. pylori and fur knockout mutant H. pylori. The degree of oxidative damage of DNA was confirmed using alkaline gel electrophoresis and an assay of 8-hydroxy-2-deoxyguanosine (8-OHdG). In control groups, the number of viable cells was maintained constantly during experiment. After PDT, the mutant H. pylori showed 10,000 times decreased viable cell number compared with wild type H. pylori. Depending on the exposure time of 660 nm light, the 3-fold increase in the concentration of 8-OHdG was observed in mutant H. pylori. The results of this study showed that H. pylori's Fur protein may play a role in oxidative stress induced by PDT.

Helicobacter pylori균의 ferric uptake regulator (Fur) 단백질의 산화적 손상에 대한 역할을 연구하였다. H. pylori균의 fur 유전자를 제거한 돌연변이체를 만들고 wild type H. pylori균과 돌연변이체 균의 산화적 스트레스에 대한 반응을 비교하였다. 산화적 스트레스는 methylene blue와 660 nm 파장의 빛을 이용하는 광역학적 치료방법으로 유도하였다. 산화적 스트레스를 가한 실험조건에서 wt H. pylori와 돌연변이체의 생존력, DNA 손상의 정도를 비교 검토하였다. 그 결과 fur 유전자가 제거된 돌연변이체의 생균수가 wt에 비해 10,000배 가량 감소한 것을 알 수 있었으며 DNA의 산화적 손상의 marker인 8-hydroxy-2-deoxyguanosine (8-OHdG)의 양도 fur 유전자 제거된 돌연변이에서 wild type에 비해 3배 정도 더 생성됨을 확인하였다. 따라서 본 실험결과 H. pylori균의 fur 유전자가 PDT법으로 유도한 산화적 스트레스에 방어 기작을 하는 것으로 사료된다.

Keywords

References

  1. Andrew, S.C., A.K. Robinson, and F. Rodriguez-Quinones. 2003. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27, 215-237. https://doi.org/10.1016/S0168-6445(03)00055-X
  2. Bachmann, B., J. Knuver-Hopf, B. Lambrecht, and H. Mohr. 1995. Target structures for HIV-1 inactivation by methylene blue and light. J. Med. Virol. 47, 172-178. https://doi.org/10.1002/jmv.1890470211
  3. Bagg, A. and J.B. Neidland. 1987. Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry 26, 5471-5477. https://doi.org/10.1021/bi00391a039
  4. Choi, S.S., H.K. Lee, and H.S. Chae. 2010. In vitro photodynamic antimicrobial activity of methylene blue and endoscopic white light against Helicobacter pylori 26695. J. Photochem. Photobiol. B. 101, 206-209. https://doi.org/10.1016/j.jphotobiol.2010.07.004
  5. Choi, S.S., P.T. Chivers, and D.E. Berg. 2011. Point mutations in Helicobacter pylori's fur regulatory gene that alters resistance to Metronidazole, a prodrug activated by chemical reduction. PLoS ONE 6, e18236. https://doi.org/10.1371/journal.pone.0018236
  6. Cooksley, C., P.J. Jenks, A. Green, A. Cockayne, R.P. Logan, and K.R. Hardie. 2003. NapA protects Helicobacter pylori from oxidative stress damage, and its production is influenced by the ferric uptake regulator. J. Med. Microbiol. 52, 461-469. https://doi.org/10.1099/jmm.0.05070-0
  7. Crabtree, J.E. 1996. Immune and inflammatory responses to Helicobacter pylori infection. Scand. J. Gastroenterol. Suppl. 215, 3-10.
  8. Creagh, T.A., M. Gleeson, D. Travis, R. Grainger, T.E. McDermott, and M.R. Butler. 1995. Is there a role for in vivo methylene blue staining in the prediction of bladder tumor recurrence? Br. J. Urol. 75, 477-479. https://doi.org/10.1111/j.1464-410X.1995.tb07268.x
  9. Dailidien, D., S. Tan, O.K. Zhang, A.H. Lee, K. Severinor, and D.E. Berg. 2007. Urea sensitization caused by separation of Helicobacter pylori RNA polymerase beta and beta' subunit. Helicobacter 12, 103-111. https://doi.org/10.1111/j.1523-5378.2007.00479.x
  10. Ernst, P.B. 1999. The role of inflammation in the pathogenesis of gastric cancer. Aliment. Pharmacol. Ther. Suppl 1, 13-18.
  11. Ernst, F.D., S. Bereswill, B. Waidner, J. Stoof, U. Mäder, J.G. Kusters, E.J. Kuipers, M. Kist, A. H. van Vliet, and G. Homuth. 2005. Transcriptional profiling of Helicobacter pylori Fur- and iron-regulated gene expression. Microbiology 151, 533-546. https://doi.org/10.1099/mic.0.27404-0
  12. Ernst, F.D., G. Homut, J. Stoof, U. Mäder, B. Waidner, E.J. Kuipers, M. Kist, J.G. Kusters, S. Bereswill, and A.H. van Vliet. 2005. Iron-responsive regulation of the Helicobacter pylori iron-cofactored superoxide dismutase SodB is mediated by Fur. J. Bacteriol. 187, 3687-3692. https://doi.org/10.1128/JB.187.11.3687-3692.2005
  13. Feldman, R.A., A.J.P. Eccersley, and J.M. Hardie. 1997. Transmission of Helicobacter pylori. Curr. Opin. Gastroenterol. 13 S1, 8-12.
  14. Hall, H.K. and J.W. Foster. 1996. The role of Fur in the acid tolerance response of Salmonella typhimurium is physiologically separable from its role in iron acquisition. J. Bacteriol. 178, 5683-5691. https://doi.org/10.1128/jb.178.19.5683-5691.1996
  15. Hamblin, M.R., J. Viveiros, C. Yang, A. Ahmadi, R.A. Ganz, and M.J. Tolkoff. 2005. Helicobacter pylori accumulates photoactive porphyrins and is killed by visible light. Antimicrob. Agents Chemother. 49, 2822-2827. https://doi.org/10.1128/AAC.49.7.2822-2827.2005
  16. Hantke, K. 2001. Iron and metal regulation in bacteria. Curr. Opin. Microbiol. 4, 172-177. https://doi.org/10.1016/S1369-5274(00)00184-3
  17. Harris, A.G., F.E. Hinds, A.G. Beckhouse, T. Kolesnikow, and S.L. Hazell. 2002. Resistance to hydrogen peroxide in Helicobacter pylori: role of catalase (KatA) and Fur, and functional analysis of a novel gene product designated 'KatA-associated protein', KapA (HP0874). Microbiology 148, 3813-3825. https://doi.org/10.1099/00221287-148-12-3813
  18. Hazell, S.L., A.G. Harris, and M.A. Trend. 2001. Evasion of the toxic effects of oxygen, pp. 167-175. Helicobacter pylori; physiology and genetics. In H.L.T. Mobley, G.L. Mendz, and S.L. Hazell (eds.). American Society for Microbiology, Washington, DC, USA.
  19. Israel, D.A., A.S. Lou, and M.J. Blaser. 2000. Characteristics of Helicobacter pylori natural transformation. FEMS Microbiol. Lett. 186, 275-280. https://doi.org/10.1111/j.1574-6968.2000.tb09117.x
  20. Kanaya, S., M. Ikeya, K. Yamamoto, T. Moriya, K. Furuhashi, M. Sonoda, K. Gotto, and H. Ochi. 2004. Comparison of an oxidative stress biomarker "urinary8-hydroxy-2'-deoxyguanosine," between smokers and non-smokers. Biofactors 22, 255-258. https://doi.org/10.1002/biof.5520220151
  21. Kozmin, S., G. Slezak, and A. Reynaud-Angelin. 2005. UVA radiation is highly mutagenic in cells that are unable to repair 7, 8-dihydro-8-oxoguanine in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 102, 13538-13593. https://doi.org/10.1073/pnas.0504497102
  22. Matsubasa, T., T. Uchino, S. Karashima, Y. Kondo, K. Maruyama, M. Tanimura, and F. Endo. 2002. Oxidative stress in very low birth weight infants as measured by urinary 8-OHdG. Free Radic. Res. 36, 189-193. https://doi.org/10.1080/10715760290006510
  23. Nardone, G., A. Rocco, and P. Malfertheiner. 2001. Helicobacter pylori and molecular events in precancerous gastric lesions. Aliment. Pharmacol. Ther. 20, 261-270.
  24. Parsonnet, J. 1999. Helicobacter and gastric adenocarcinoma, pp. 372-408. In J. Personnet (ed.). Microbes and malignancy: Infection as a cause of human cancer. Oxford University Press, New York, NY, USA.
  25. Ramarao, N., S.D. Gray-Owen, and T.F. Meyer. 2000. Helicobacter pylori induces but survives the extracellular release of oxygen radical from professional phagocytes using catalase activity. Mol. Microbiol. 38, 103-113. https://doi.org/10.1046/j.1365-2958.2000.02114.x
  26. Schneider, J.E., S. Price, L. Maidt, J.M. Gutteridge, and R.A. Floyd. 1990. Methylene blue plus light mediates 8-hydroxy-2'- deoxyguanosine formation in DNA preferentially over strand breakage. Nucleic Acids Res. 18, 631-635. https://doi.org/10.1093/nar/18.3.631
  27. Soukos, N.S., M. Wilson, T. Burns, and P.M. Speight. 1996. Photodynamic effects of toluidine blue on human oral keratinocytes and fibroblasts and Streptococcus sanguis evaluated in vitro. Lasers Surg. Med. 18, 253-259. https://doi.org/10.1002/(SICI)1096-9101(1996)18:3<253::AID-LSM6>3.0.CO;2-R
  28. Tan, S. and D.E. Berg. 2004. Motility of urease-deficient derivatives of Helicobacter pylori. J. Bacteriol. 186, 885-888. https://doi.org/10.1128/JB.186.3.885-888.2004
  29. Tegos, G.P. and M.R. Hamblin. 2006. Phenothiazine antimicrobial photosensitizers are substrates of bacterial multidrug resistance pumps. Antimicrob. Agents Chemother. 50, 196-203. https://doi.org/10.1128/AAC.50.1.196-203.2006
  30. Tourati, D. 2000. Iron and oxidative stress in bacteria. Arch. Biochem. Biophys. 373, 1-8. https://doi.org/10.1006/abbi.1999.1518
  31. Uemura, N., S. Okamoto, S. Yamamoto, N. Matsumura, S. Yamaguchi, M. Yamakido, K. Taniyama, N. Sasaki, and R.J. Schlemper. 2001. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med. 345, 784-789. https://doi.org/10.1056/NEJMoa001999
  32. Wainwright, M. 1998. Phtodynamic antimicrobial chemotherapy. J. Antimicrob. Chemother. 42, 13-28. https://doi.org/10.1093/jac/42.1.13
  33. Wang, G., P. Alamuri, and R.J. Maier. 2006. The diverse antioxidant systems of Helicobacter pylori. Mol. Microbiol. 61, 847-860. https://doi.org/10.1111/j.1365-2958.2006.05302.x