Browse > Article

Differential Effects of Two Period Genes on the Physiology and Proteomic Profiles of Mouse Anterior Tibialis Muscles  

Bae, Kiho (Department of Life Science, Yonsei University)
Lee, Kisoo (Department of Life Science, Yonsei University)
Seo, Younguk (Department of Life Science, Yonsei University)
Lee, Haesang (Department of Life Science, Yonsei University)
Kim, Dongyong (Department of Life Science, Yonsei University)
Choi, Inho (Department of Life Science, Yonsei University)
Abstract
The molecular components that generate and maintain circadian rhythms of physiology and behavior in mammals are present both in the brain (suprachiasmatic nucleus; SCN) and in peripheral tissues. Examination of mice with targeted disruptions of either mPer1 or mPer2 has shown that these two genes have key roles in the SCN circadian clock. Here we show that loss of the clock gene mPer2 affects forced locomotor performance in mice without altering muscle contractility. A proteomic analysis revealed that the anterior tibialis muscles of the mPer2 knockout mice had higher levels of glycolytic enzymes such as triose phosphate isomerase and enolase than those of either the wild type or mPer1 knockout mice. In addition, the level of expression of HSP90 in the mPer2 mutant mice was also significantly higher than in wildtype mice. These results suggest that the reduced locomotor endurance of the mPer2 knockout mice reflects a greater dependence on anaerobic metabolism under stress conditions, and that the two canonical clock genes, mPer1 and mPer2, play distinct roles in the physiology of skeletal muscle.
Keywords
Circadian Clock; mPer Mutant Mice; Muscle Contraction; Treadmill Running; Two-dimensional Gel Electrophoresis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 8  (Related Records In Web of Science)
연도 인용수 순위
1 Dawson, B., Fitzsimons, M., Green, S., Goodman, C., Carey, M., et al. (1998) Changes in performance, muscle metabolites, enzymes and fibre types after short sprint training. Eur. J. Appl. Physiol. Occup. Physiol. 78, 163−169
2 Fu, L., Pelicano, H., Liu, J., Huang, P., and Lee, C. C. (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111, 41−50
3 Isfort, R. J., Wang, F., Greis, K. D., Sun, Y., Keough, T. W., et al. (2002) Proteomic analysis of rat soleus muscle undergoing hindlimb suspension-induced atrophy and reweighting hypertrophy. Proteomics 2, 543−550   DOI   ScienceOn
4 Sehgal, A. (2004) Molecular biology of circadian rhythms. pp. 131−140 and 221−229, John Wiley & Sons, Inc., Hoboken
5 Shearman, L. P., Sriram, S., Weaver, D. R., Maywood, E. S., Chaves, I., et al. (2000) Interacting molecular loops in the mammalian circadian clock. Science 288, 1013−1019
6 Srikakulam, R. and Winkelmann, D. A. (2004) Chaperonemediated folding and assembly of myosin in striated muscle. J. Cell Sci. 117, 641−652   DOI   ScienceOn
7 Stokkan, K., Yamazaki, S., Tei, H., Sakaki, Y., and Menaker, M. (2001) Entrainment of the circadian clock in the liver by feeding. Science 293, 490−493
8 van der Horst, G. T. J., Muijtjens, M., Kobayashi, K., Takano, R., Kanno, S., et al. (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398, 627−630
9 Hirano, M., Rakwal, R., Shibato, J., Agrawal, G. K., Jwa, N-S., et al. (2006) New protein extraction/solubilization protocol for gel-based proteomics of rat (female) whole brain and brain regions. Mol. Cells 22, 119−125
10 Dallmann, R., Touma, C., Palme, R., Albrecht, U., and Steinlechner, S. (2006) Impaired daily glucocorticoid rhythm in $Per1^{Brd}$ mice. J. Comp. Physiol. A. 192, 769−775   DOI   ScienceOn
11 Lee, C., Weaver, D. R., and Reppert, S. M. (2004a) Direct association between mouse PERIOD and CKI$\varepsilon$ is critical for a functioning circadian clock. Mol. Cell. Biol. 24, 584−594   DOI   ScienceOn
12 Huang, T. H., Yang, R. S., Hsieh, S. S., and Liu, S. H. (2002) Effects of caffeine and exercise on the development of bone: a densitometric and histomorphometric study in young wistar rats. Bone 30, 293−299
13 Hornberger, T. A. and Esser, K. A. (2004) Mechanotransduction and the regulation of protein synthesis in skeletal muscle. Proc. Nutr. Soc. 63, 331−335
14 Reppert, S. M. and Weaver, D. R. (2001) Molecular analysis of mammalian circadian rhythms. Ann. Rev. Physiol. 63, 647− 676   DOI   ScienceOn
15 Ueda, H. R., Hayashi, S., Chen, W., Sano, M., Machida, M., et al. (2005) System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat. Genetics 37, 187−192   DOI   ScienceOn
16 Balsalobre, A., Marcacci, L., and Schibler, U. (2000) Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr. Biol. 10, 1291−1294   DOI   ScienceOn
17 Rome, L. C. (1998) Some advances in integrative muscle physiology. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 120, 51−72
18 Dowson, M. N., Nevill, M. E., Lakomy, H. K., Nevill, A. M., and Hazeldine, R. J. (1998) Modeling the relationship between isokinetic muscle strength and sprint running performance. J. Sports Sci. 16, 257−265
19 Gekakis, N., Staknis, D., Nguyen, H. B., Davis, F. C., Wilsbacher, L. D., et al. (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564−1569
20 Zheng, B., Albrecht, U., Kaasik, K., Sage, M., Lu, W., et al. (2001) Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105, 683−694
21 Kregel, K. C. (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 92, 2177−2186
22 Lowrey, P. L. and Takahashi, J. S. (2004) Mammalian circadian biology: Elucidating genome-wide levels of temporal organization. Ann. Rev. Genomics Hum. Genet. 5, 407−441   DOI   ScienceOn
23 Damiola, F., Minh, L., Preitner, N., Kornmann, B., Fleury-Olela, F., et al. (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14, 2950−2961   DOI   ScienceOn
24 Payne, R. C., Veenman, P., and Wilson, A. M. (2005) The role of the extrinsic thoracic limb muscles in equine locomotion. J. Anat. 206, 193−204   DOI   ScienceOn
25 Bunger, M. K., Wilsbacher, L. D., Moran, S. M., Clendenin, C., Radcliffe, L. A., et al. (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103, 1009−1017
26 Merkulova, T., Dehaupas, M., Nevers, M., Creminon, C., Alameddine, H., et al. (2000) Differential modulation of $\alpha$, $\beta$ and $\gamma$ enolase isoforms in regenerating mouse skeletal muscle. Eur. J. Biochem. 267, 3735−3743   DOI   ScienceOn
27 Lee, K., Lee, Y. S., Lee, M., Yamashita, M., and Choi, I. (2004b) Mechanics and fatigability of the rat soleus muscle during early reloading. Yonsei Med. J. 45, 690−702
28 Seo, Y., Lee, K., Park, K., Bae, K., and Choi, I. (2006) A proteomic assessment of muscle contractile alterations during unloading and reloading. J. Biochem. 139, 71−80   DOI   ScienceOn
29 Yoo, S. H., Yamazaki, S., Lowrey, P. L., Shimomura, K., Ko, C. H., et al. (2004) PERIOD::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. USA 101, 5339−5346
30 Baker, E. J. and Gleeson, T. T. (1999) The effects of intensity on the energetics of brief locomotor activity. J. Exp. Biol. 202, 3081−3087
31 Yan, L. and Silver, R. (2004) Resetting the brain clock: time course and localization of mPer1 and mPer2 protein expression in suprachiasmatic nuclei during phase shifts. Eur. J. Neurosci. 19, 1105−1109   DOI   ScienceOn
32 Kaasik, K. and Lee, C. C. (2004) Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature 430, 467−477   DOI   ScienceOn
33 Lee, J. W. and Bae, K. (2004) Functional implications of the mammalian clock gene, mPer expression in the peripheral tissues. J. Nano Bio. Tech. 2, 94−99
34 Lee, M., Choi, I., and Park, K. (2002) Activation of stress signaling molecules in bat brain during arousal from hibernation. J. Neurochem. 82, 867−873
35 Silver, R., LeSauter, J., Tresco, P. A., and Lehman, M. N. (1996) A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382, 810−813   DOI   ScienceOn
36 Rudic, R. D., McNamara, P., Curtis, A. M., Boston, R. C., Panda, S., et al. (2004) BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLosbiology 2, 1893−1899
37 Bae, K., Jin, X., Maywood, E. S., Hastings, M. H., Reppert, S. M., et al. (2001) Differential functions of mPer1, mPer2 and mPer3 in the SCN circadian clock. Neuron 30, 525−536
38 Challet, E., Malan, A., Turek, F. W., and van Reeth, O. (2003) Daily variations of blood glucose, acid-base state and $PCO_{2}$ in rats: effect of light exposure. Neurosci. Lett. 355, 131−135   DOI
39 Kim, H.-G. and Bae, K. (2006) Effect of mPER1 on the expression of HSP105 gene in the mouse SCN. J. Exp. Biomed. Sci. 12, 53−56
40 Rutter, J., Reick, M., Wu, L. C., and McKnight, S. L. (2001) Regulation of Clock and Npas2 DNA binding by the redox state of NAD cofactors. Science 293, 510−514