• Title/Summary/Keyword: knock

Search Result 433, Processing Time 0.032 seconds

Study on the Estimation of Knock Position in a LPG Engine with Ion-probe Head Gasket (LPG엔진에서 이온프로브를 이용한 노킹 발생 위치 추정에 관한 연구)

  • Lee, Joung-Won;Choi, Hoi-Myung;Cho, Hoon;Hwang, Seung-Hwan;Min, Kyoung-doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.42-48
    • /
    • 2003
  • LPG has been a broad concern of pro-environmental alternative fuel for vehicles. Recently, the new Liquid Phase LPG Injection(LPLI) system extends the limit of power of LPG engine and gives a chance to substitute LPG engine for diesel engine of heavy duty vehicles that are the main resources of air pollution in urban area. Large bore size of heavy duty LPG engine derives a serious knock problem. To find an optimal MBT conditions, it is necessary to know how the flame develops in the combustion chamber and find where the knock positions are. In this study. the ion-probe head gasket was used to estimate the knock position. Inverse operation of the ion-probe signal provides the flame developing characteristics. The further the position is from the spark plug, the later the flame arrives and the more times knock occurs. The main factor that effects knock position is inferred a flor situation of mixed gas in the combustion chamber.

Knock-in Vector for Expression of Insulin-like Growth Factor 1 on the Bovine β-casein Gene Locus (소 β-casein 유전자 영역에서 소 Insulin-like Growth Factor 1을 생산하기 위한 Knock-in Vector)

  • Kim, Sang Young;Park, Da Som;Kim, Se Eun;Koo, Deog-Bon;Kang, Man-Jong
    • Reproductive and Developmental Biology
    • /
    • v.41 no.3
    • /
    • pp.51-55
    • /
    • 2017
  • The production of therapeutic protein from transgenic domestic animal is the major technology of biotechnology. Insulin-like growth factor-1 (IGF-1) is known to play an important role in the growth of the animal. The objective of this study is construction of knock-in vector that bovine IGF-1 gene is inserted into the exon 7 locus of ${\beta}$-casein gene and expressed using the gene regulatory DNA sequence of bovine ${\beta}$-casein gene. The knock-in vector consists of 5' arm region (1.02 kb), bIGF-1 cDNA, CMV-EGFP, and 3' arm region (1.81 kb). To express bIGF-1 gene as transgene, the F2A sequence was fused to the 5' terminal of bIGF-1 gene and inserted into exon 7 of the ${\beta}$-casein gene. As a result, the knock-in vector is confirmed that the amino acids are synthesized without termination from the ${\beta}$-casein exon 7 region to the bIGF-1 gene by DNA sequence. These knock-in vectors may help to create transgenic dairy cattle expressing bovine bIGF-1 protein in the mammary gland via the expression system of the bovine ${\beta}$-casein gene.

Knock-in Somatic Cells of Human Decay Accelerating Factor and α1,2-Fucosyltransferase Gene on the α1,3-Galactosyltransferase Gene Locus of Miniature Pig (α1,3-Galactosyltransferase 유전자 위치에 사람 Decay Accelerating Factor와 α1,2-Fucosyltransferase 유전자가 Knock-in된 미니돼지 체세포)

  • Kim, Ji Woo;Kang, Man-Jong
    • Reproductive and Developmental Biology
    • /
    • v.39 no.3
    • /
    • pp.59-67
    • /
    • 2015
  • Galactose-${\alpha}1,3$-galactose (${\alpha}1,3$-Gal) epitope is synthesized at a high concentration on the surface of pig cells by ${\alpha}1,3$-galactosyltransferase gene (GGTA1). The ${\alpha}1,3$-Gal is responsible for hyperacute rejection in pig-to-human xenotransplantation. The generation of transgenic pigs as organ donors for humans is necessary to eliminate the GGTA1 gene that synthesize $Gal{\alpha}$(1,3)Gal. To prevent hyperacute graft rejection in pig-to-human xenotransplantation, previously, we developed ${\alpha}1,3$-galactosyltransferase gene-knock-out somatic cell by homologous recombination. In this study, we established cell lines of ${\alpha}1,3$-GT knock-out expressing hDAF and hHT gene from minipig fibroblasts to apply somatic cell nuclear transfer. The hDAF and hHT mRNA were expressed in the knock-in somatic cells and ${\alpha}1,3$-GT mRNA was suppressed. However, the knock-in somatic cells were increased resistance to human serum-mediated cytolysis.

Relationship between DNA mismatch repair and CRISPR/Cas9-mediated knock-in in the bovine β-casein gene locus

  • Kim, Seung-Yeon;Kim, Ga-Yeon;You, Hyeong-Ju;Kang, Man-Jong
    • Animal Bioscience
    • /
    • v.35 no.1
    • /
    • pp.126-137
    • /
    • 2022
  • Objective: Efficient gene editing technology is critical for successful knock-in in domestic animals. RAD51 recombinase (RAD51) gene plays an important role in strand invasion during homologous recombination (HR) in mammals, and is regulated by checkpoint kinase 1 (CHK1) and CHK2 genes, which are upstream elements of RAD51 recombinase (RAD51). In addition, mismatch repair (MMR) system is inextricably linked to HR-related pathways and regulates HR via heteroduplex rejection. Thus, the aim of this study was to investigate whether clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9)-mediated knock-in efficiency of human lactoferrin (hLF) knock-in vector in the bovine β-casein gene locus can be increased by suppressing DNA MMR-related genes (MSH2, MSH3, MSH6, MLH1, and PMS2) and overexpressing DNA double-strand break (DSB) repair-related genes (RAD51, CHK1, CHK2). Methods: Bovine mammary epithelial (MAC-T) cells were transfected with a knock-in vector, RAD51, CHK1, or CHK2 overexpression vector and CRISPR/sgRNA expression vector to target the bovine β-casein gene locus, followed by treatment of the cells with CdCl2 for 24 hours. After 3 days of CdCl2 treatment, the knock-in efficiency was confirmed by polymerase chain reaction (PCR). The mRNA expression levels of DNA MMR-related and DNA DSB repair-related genes were assessed by quantitative real-time PCR (RT-qPCR). Results: Treatment with CdCl2 decreased the mRNA expression of RAD51 and MMRrelated genes but did not increase the knock-in efficiency in MAC-T cells. Also, the overexpression of DNA DSB repair-related genes in MAC-T cells did not significantly affect the mRNA expression of MMR-related genes and failed to increase the knock-in efficiency. Conclusion: Treatment with CdCl2 inhibited the mRNA levels of RAD51 and DNA MMR-related genes in MAC-T cells. However, the function of MMR pathway in relation to HR may differ in various cell types or species.

A Study of Easy Knock-down Hanger Design (조립이 간편한 넉다운(knock down) 행거 개발)

  • Im, Kwang-Soon;Kim, Jong-Seo;Cho, Sook-Kyung
    • Journal of the Korea Furniture Society
    • /
    • v.18 no.3
    • /
    • pp.234-242
    • /
    • 2007
  • This study purpose is to design the stand-hangers that can be fabricated conveniently and effectly for manufacture and the market situation of Piwoori Furniture. The study scope is from the research to design prototype in a design process. This study explored the development of knock-down hanger which can be easily assembled and be newly oriented to hanger style. The hangers were made into two main parts with lower part composed as legs, drawers, and containers, and with lower part composed as a shelf and hanger-bear As they are emphasized by the function and usefulness, small sized clothing, underwear, and socks can be stored, and a lot of pants and jackets can be hanged by adjusting the height Therefore, it is not difficult for them to be packed, stored, and transported by being easily assembled and disassembled from the adaption of the knock-down system. Furthermore, the hangers made of the natural wood show the quality of texture and appearance.

  • PDF

Study on ignition timing feedback control using the knock sensor (노크센서를 이용한 점화시기 피이드백 제어에 관한 연구)

  • 김연준;고상근
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.61-67
    • /
    • 1992
  • The ignition timing feedback control system was studied to enhance the engine power and to reduce the fuel consumption by optimizing the spark timing. The signal of a piezo-electric vibration transducer attached to the engine block was compared with that of a pressure transducer in order to determine the knock intensity. With the result of comparison the ignition timing feedback control system which detect the knock and correct the spark timing was set up. The ignition could be more advaced with this control system than the existing system without the continuous knocking, therefore the engine torque was increased.

  • PDF

Theoretical Prediction Method on Occurrence of Spark Knock (스파크노크 발생에 대한 이론적 예측방법)

  • 이내현;오영일;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3326-3334
    • /
    • 1994
  • To theoretically predict knock occurrence in S. I. engine as a function of engine design and operating parameters, transient local temperature and pressure, mixture density of flame front in combustion period are calculated. We next determined normal combustion period and auto ignition period of end gas using the prediction method on occurrence of spark knock which we suggested. We predict knock occurrence in S. I. engine by comparing consecutively normal combustion period with the auto ignition period of end gas in combustion period. Engine design and operating parameters such as compression ratio, engine speed, spark timing, inlet temperature and pressure are taken into account in this calculations. The predicted result are well matched with the experimental results in turbocharged engine. Therefore, this method will provide the systematic guideline for designing engines in view of knocking limits.

Recent Progress in Biotechnology-based Gene Manipulating Systems to Produce Knock-In/Out Mouse Models

  • Lee, Woon Kyu;Park, Joong Jean;Cha, Seok Ho;Yun, Cheol-Heui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.5
    • /
    • pp.745-753
    • /
    • 2008
  • Gene-manipulated mice were discovered for the first time about a quarter century ago. Since then, numerous sophisticated technologies have been developed and applied to answer key questions about the fundamental roles of the genes of interest. Functional genomics can be characterized into gain-of-function and loss-of-function, which are called transgenic and knock-out studies, respectively. To make transgenic mice, the most widely used technique is the microinjection of transgene-containing vectors into the embryonic pronucleus. However, there are critical drawbacks: namely position effects, integration of unknown copies of a foreign gene, and instability of the foreign DNA within the host genome. To overcome these problems, the ROSA26 locus was used for the knock-in site of a transgene. Usage of this locus is discussed for the gain of function study as well as for several brilliant approaches such as conditional/inducible transgenic system, reproducible/inducible knockdown system, specific cell ablation by Cre-mediated expression of DTA, Cre-ERTM mice as a useful tool for temporal gene regulation, MORE mice as a germ line delete and site specific recombinase system. Techniques to make null mutant mice include complicated steps: vector design and construction, colony selection of embryonic stem (ES) cells, production of chimera mice, confirmation of germ line transmission, and so forth. It is tedious and labor intensive work and difficult to approach. Thus, it is not readily accessible by most researchers. In order to overcome such limitations, technical breakthroughs such as reporter knock-in and gene knock-out system, production of homozygous mutant ES cells from a single targeting vector, and production of mutant mice from tetraploid embryos are developed. With these upcoming progresses, it is important to consider how we could develop these systems further and expand to other animal models such as pigs and monkeys that have more physiological similarities to humans.