DOI QR코드

DOI QR Code

α1,3-Galactosyltransferase 유전자 위치에 사람 Decay Accelerating Factor와 α1,2-Fucosyltransferase 유전자가 Knock-in된 미니돼지 체세포

Knock-in Somatic Cells of Human Decay Accelerating Factor and α1,2-Fucosyltransferase Gene on the α1,3-Galactosyltransferase Gene Locus of Miniature Pig

  • 김지우 (전남대학교 농업생명과학대학 동물자원학부) ;
  • 강만종 (전남대학교 농업생명과학대학 동물자원학부)
  • Kim, Ji Woo (Department of Animal Science, College of Agriculture & Life Science, Chonnam National University) ;
  • Kang, Man-Jong (Department of Animal Science, College of Agriculture & Life Science, Chonnam National University)
  • 투고 : 2015.08.08
  • 심사 : 2015.08.17
  • 발행 : 2015.08.31

초록

동물의 장기를 인간에게 이식하게 되면 초급성거부반응(Hyperacute rejection, HAR)이 일어난다. 초급성거부반응은 면역계의 구성요소 중 보체(complement)에 의해 일어나는 거부반응으로 돼지의 혈관세포 표면에 있는 $Gal{\alpha}$(1,3)Gal 당분자에 인간의 항체가 즉각 반응하기 때문에 일어나며, ${\alpha}1,3$-galactosyltransferase(${\alpha}1,3$-GT) 유전자는 돼지 혈관세포 표면의 $Gal{\alpha}$(1,3)Gal 당분자 생성에 관여한다. 따라서 인간에게 돼지의 장기를 이식하기 위해서는 ${\alpha}1,3$-galactosyltransferase 유전자를 제거하는 것이 필요한 것으로 알려져 있다. 본 연구실의 이전 연구에서, 시카고 미니돼지 귀체세포에서 상동 재조합(Homologous recombination)을 통해 ${\alpha}1,3$-galactosyltransferase 유전자가 제거된 체세포를 개발한 바 있으며, 이 체세포를 통하여 ${\alpha}1,3$-GT 유전자가 제거된 돼지도 생산된 바 있다. 본 연구에서는, human serum 처리 시 돼지 세포를 보호해 준다고 보고되고 있는 human complement regulator인 human Decay-accelerating factor(hDAF)와 human ${\alpha}1,2$-fucosyltransferase(hHT)유전자를 ${\alpha}1,3$-GT 유전자 위치에 gene targeting하여 동시에 hDAF와 hHT가 발현하는 체세포를 개발하였다. Knock-in vector는 hDAF와 hHT 두 유전자가 발현할 수 있도록 IRES로 연결하였으며, ${\alpha}1,3$-GT 유전자의 start codon을 이용하여 발현할 수 있도록 구축하였다. 구축한 vector는 electroporation을 통해 미니 돼지 체세포에 도입하였으며, PCR 결과, ${\alpha}1,3$-GT 유전자 위치에서 상동 재조합이 일어났음을 확인하였다. Positive-negative 선별 방법을 통해 얻은 gene targeting 된 체세포는 RT-PCR에 의해 hDAF와 hHT 유전자의 발현이 확인되었으며, 대조군(NIH minipig)에 비해 ${\alpha}1,3$-GT 유전자의 발현이 감소하였다. 또한 이들 세포에 100% human complement serum을 처리하였을 때 knock-in 세포가 대조군에 비해 30% 정도 더 높은 생존율을 보였다. 따라서 개발된 체세포는 이종간 장기이식을 위한 돼지 생산과 함께 이를 이용한 이종간의 장기 이식 시 초급성 거부반응을 억제하는 데 사용될 수 있을 것으로 생각된다.

Galactose-${\alpha}1,3$-galactose (${\alpha}1,3$-Gal) epitope is synthesized at a high concentration on the surface of pig cells by ${\alpha}1,3$-galactosyltransferase gene (GGTA1). The ${\alpha}1,3$-Gal is responsible for hyperacute rejection in pig-to-human xenotransplantation. The generation of transgenic pigs as organ donors for humans is necessary to eliminate the GGTA1 gene that synthesize $Gal{\alpha}$(1,3)Gal. To prevent hyperacute graft rejection in pig-to-human xenotransplantation, previously, we developed ${\alpha}1,3$-galactosyltransferase gene-knock-out somatic cell by homologous recombination. In this study, we established cell lines of ${\alpha}1,3$-GT knock-out expressing hDAF and hHT gene from minipig fibroblasts to apply somatic cell nuclear transfer. The hDAF and hHT mRNA were expressed in the knock-in somatic cells and ${\alpha}1,3$-GT mRNA was suppressed. However, the knock-in somatic cells were increased resistance to human serum-mediated cytolysis.

키워드

참고문헌

  1. Baldan N, Rigotti P, Calabrese F, Cadrobbi R, Dedja A, Iacopetti I, Boldrin M, Seveso M, Dall'Olmo L, Frison L, De Benedictis G, Bernardini D, Thiene G, Cozzi E, Ancona E (2004) Ureteral stenosis in HDAF pig-to-primate renal xenotransplantation: A phenomenon related to immunological events? Am J Transplant 4:475-481. https://doi.org/10.1111/j.1600-6143.2004.00407.x
  2. Blanken WM, Van den Eijnden DH (1985) Biosynthesis of terminal $Gal{\alpha}1{\rightarrow}3Gal{\beta}1{\rightarrow}4GlcNAc-R$ oligosaccharide sequences on glycoconjugates. J Biol Chem 260:12927-12934.
  3. Cargnoni A, Gibelli L, Tosini A, Signoroni PB, Nassuato C, Arienti D, Lombardi G, Albertini A, Wengler GS, Parolini O (2009) Transplantation of allogeneic and xenogeneic placenta-derived cells reduces bleomycininduced lung fibrosis. Cell Transplant 18:405-422. https://doi.org/10.3727/096368909788809857
  4. Chen CG, Salvaris EJ, Romanella M, Aminian A, Katerelos M, Fisicaro N, d'Apice AJ, Pearse MJ (1996) Transgenic expression of human alpha1,2-fucosyltransferase (H-transferase) prolongs mouse heart survival in an ex vivo model of xenograft rejection. Transplantation 65:832-837.
  5. Chen G, Sun H, Yang H, Kubelik D, Garcia B, Luo Y, Xiang Y, Qian A, Copeman L, Liu W, Cardella CJ, Wang W, Xiong Y, Wall W, White DJ, Zhong R (2006) The role of anti-non-Gal antibodies in the development of acute humoral xenograft rejection of hDAF transgenic porcine kidneys in baboons receiving anti- Gal antibody neutralization therapy. Transplantation 81:273-283. https://doi.org/10.1097/01.tp.0000188138.53502.de
  6. Cohney S, McKenzie IF, Patton K, Prenzoska J, Ostenreid K, Fodor WL, Sandrin MS (1997) Down- regulation of Gala(1,3) Gal expression by a1,2-fucosyltransferase: Further characterization of a1BV, 2-fucosyltransferase transgenic mice. Transplantation 64:495- 500. https://doi.org/10.1097/00007890-199708150-00020
  7. Cooper DK, Good AH, Koren E, Oriol R, Malcolm AJ, Ippolito RM, Neethling FA, Ye Y, Romano E, Zuhdi N (1993) Identification of alpha-galactosyl and other carbohydrate epitopes that are bound by human antipig antibodies: relevance to discordant xenografting in man. Transpl Immunol 1:198-205. https://doi.org/10.1016/0966-3274(93)90047-C
  8. Costa C, Zhao L, Burton WV, Rosas C, Bondioli KR, Williams BL, Hoagland TA, Dalmasso AP, Fodor WL (2002) Transgenic pigs designed to express human CD59 and H-transferase to avoid humoral xenograft rejection. Xenotransplantation 9:45-57. https://doi.org/10.1034/j.1399-3089.2002.0o142.x
  9. Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S, Monahan JA, Jobst PM, McCreath KJ, Lamborn AE, Cowell-Lucero JL, Wells KD, Colman A, Polejaeva IA, Ayares DL (2002) Targeted disruption of the alpha 1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 20:251-255. https://doi.org/10.1038/nbt0302-251
  10. Denning C, Burl S, Ainslie A, Bracken J, Dinnyes A, Fletcher J, King T, Ritchie M, Ritchie WA, Rollo M, de Sousa P, Travers A, Wilmut I, Clark AJ (2001) Deletion of the alpha(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nat Biotechnol 19:559-562. https://doi.org/10.1038/89313
  11. Galili U, Clark MR, Shohet SB, Buehler J, Macher BA (1987) Evolutionary relationship between the natural anti-Gal antibody and the Galal$\rightarrow$3Gal epitope in primates. Proc Natl Acad Sci USA 84:1369-1373. https://doi.org/10.1073/pnas.84.5.1369
  12. Hasty P, Rivera-Perez J, Bradley A (1991) The length of homology required for gene targeting in embryonic stem cells. Mol Cell Biol 11:5586-5591. https://doi.org/10.1128/MCB.11.11.5586
  13. Kennedy SP, Rollins SA, Burton WV, Sims PJ, Bothwell AL, Squinto SP, Zavoico GB (1994) Protection of porcine aortic endothelial cells from complementmediated cell lysis and activation by recombinant human CD59. Transplantation 57:1494-1501. https://doi.org/10.1097/00007890-199405270-00017
  14. Koike C, Katayama A, Kadomatsu K, Hiraiwa N, Hayashi S, Kobayashi T, Hayash S, Yokoyama I, Takagi H (1996) Reduction of alpha-Gal epitopes in transgenic pig by introduction of human alpha 1-2 fucosyltransferase. Transplant Proc 29:894.
  15. Koren E, Neethling FA, Richards S, Koscec M, Ye Y, Zuhdi N, Cooper DK (1992) Binding and specificity of major immunoglobulin classes of preformed human anti-pig heart antibodies. Transpl Int 6:351-353.
  16. Lachmann PJ (1991) The control of homologous lysis. Immunol Today 12:312-315. https://doi.org/10.1016/0167-5699(91)90005-E
  17. Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, Samuel M, Bonk A, Rieke A, Day BN, Murphy CN, Carter DB, Hawley RJ, Prather RS (2002) Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089-1092. https://doi.org/10.1126/science.1068228
  18. Levy GA, Ghanekar A, Mendicino M, Phillips MJ, Grant DR (2001) The present status of xenotransplantation. Transplant Proc 33:3050-3052. https://doi.org/10.1016/S0041-1345(01)02304-1
  19. Mei J, Sgroi A, Mai G, Baertschiger R, Gonelle-Gispert C, Serre-Beinier V, Morel P, Buhler LH (2009) Improved survival of fulminant liver failure by transplantation of microencapsulated cryopreserved porcine hepatocytes in mice. Cell Transplant 18:101-110. https://doi.org/10.3727/096368909788237168
  20. Morgan BP (1995) Complement regulatory molecules: Application to therapy and transplantation. Immunol Today 16:257-259. https://doi.org/10.1016/0167-5699(95)80175-8
  21. Platt JL, Lin SS (1998) The future promises of xenotransplantation. Ann N Y Acad Sci 862:5-18. https://doi.org/10.1111/j.1749-6632.1998.tb09112.x
  22. Sandrin MS, Vaughan HA, Dabkowski PL, McKenzie IF (1993) Anti-pig IgM antibodies in human serum react predominantly with Gal(alpha 1-3)Gal epitopes. Proc Natl Acad Sci USA 90:11391-11395. https://doi.org/10.1073/pnas.90.23.11391
  23. Sharma A, Okabe J, Birch P, McClellan SB, Martin MJ, Platt JL, Logan JS (1996) Reduction in the level of Gala(1,3)Gal in transgenic mice and pigs by expression of an a(1,2) fucosyltransferase. Proc Natl Acad Sci USA 93:7190-195. https://doi.org/10.1073/pnas.93.14.7190
  24. Shimizu A, Yamada K (2006) Pathology of renal xenograft rejection in pig to non-human primate transplantation. Clin Transplant 15:46-52.
  25. Sprangers B, Waer M, Billiau AD (2008) Xenotransplantation: Where are we in 2008? Kidney Int 74: 14-21. https://doi.org/10.1038/ki.2008.135
  26. Yamaizumi M, Mekada E, Uchida T, Okada Y (1978) One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 15:245-50. https://doi.org/10.1016/0092-8674(78)90099-5
  27. Yanagawa Y, Kobayashi T, Ohnishi M, Kobayashi T, Tamura S, Tsuzuki T, Sanbo M, Yagi T, Tashiro F, Miyazaki J (1999) Enrichment and efficient screening of ES cells containing a targeted mutation: the use of DT-A gene with the polyadenylation signal as a negative selection maker. Transgenic Res 8:215-221. https://doi.org/10.1023/A:1008914020843
  28. Yang YG, Sykes M (2007) Xenotransplantation: Current status and a perspective on the future. Nat Rev Immunol 7:519-531. https://doi.org/10.1038/nri2099