• 제목/요약/키워드: knock

검색결과 430건 처리시간 0.027초

Transition Substitution of Desired Bases in Human Pluripotent Stem Cells with Base Editors: A Step-by-Step Guide

  • Ju-Chan Park;Keun-Tae Kim;Hyeon-Ki Jang;Hyuk-Jin Cha
    • International Journal of Stem Cells
    • /
    • 제16권2호
    • /
    • pp.234-243
    • /
    • 2023
  • The recent advances in human pluripotent stem cells (hPSCs) enable to precisely edit the desired bases in hPSCs to be used for the establishment of isogenic disease models and autologous ex vivo cell therapy. The knock-in approach based on the homologous directed repair with Cas9 endonuclease, causing DNA double-strand breaks (DSBs), produces not only insertion and deletion (indel) mutations but also deleterious large deletions. On the contrary, due to the lack of Cas9 endonuclease activity, base editors (BEs) such as adenine base editor (ABE) and cytosine base editor (CBE) allow precise base substitution by conjugated deaminase activity, free from DSB formation. Despite the limitation of BEs in transition substitution, precise base editing by BEs with no massive off-targets is suggested to be a prospective alternative in hPSCs for clinical applications. Considering the unique cellular characteristics of hPSCs, a few points should be considered. Herein, we describe an updated and optimized protocol for base editing in hPSCs. We also describe an improved methodology for CBE-based C to T substitutions, which are generally lower than A to G substitutions in hPSCs.

DNA Damage-inducible Phosphorylation of p53 at Ser20 is Required for p53 Stabilization

  • Yang, Dong-Hwa;Rhee, Byung-Kirl;Yim, Tae-Hee;Lee, Hye-Jin;Kim, Jungho
    • Animal cells and systems
    • /
    • 제6권3호
    • /
    • pp.263-269
    • /
    • 2002
  • The p53 tumor suppressor gene is among the most frequently mutated and studied genes in human cancer, but the mechanisms by which it sur presses tumor formation remain unclear. DNA damage regulates both the protein levels of p53 and its affinity for specific DNA sequences. Stabilization of p53 in response to DNA damage is caused by its dissociation from Mdm2, a downstream target gene of p53 and a protein that targets p53 for degradation in the proteosome. Recent studies have suggested that phosphorylation of human p53 at Ser20 is important for stabilizing p53 in response to DNA damage through disruption of the interaction between Mdm2 and p53. We generated mice with an allele encoding changes at Ser20, known to be essential for p53 accumulation following DNA damage, to enable analyses of p53 stabilization in vivo. Our data showed that the mutant p53 was clearly defective for full stabilization of p53 in response to DNA damage. We concluded that Ser20 phosphorylation is critical for modulating the negative regulation of p53 by Mdm2, probably through phosphorylation-dependent inhibition of p53-Mdm2 interaction in the physiological context.

Anti-Apoptotic Effects of SERPIN B3 and B4 via STAT6 Activation in Macrophages after Infection with Toxoplasma gondii

  • Song, Kyoung-Ju;Ahn, Hye-Jin;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • 제50권1호
    • /
    • pp.1-6
    • /
    • 2012
  • $Toxoplasma$ $gondii$ penetrates all kinds of nucleated eukaryotic cells but modulates host cells differently for its intracellular survival. In a previous study, we found out that serine protease inhibitors B3 and B4 (SERPIN B3/B4 because of their very high homology) were significantly induced in THP-1-derived macrophages infected with $T.$ $gondii$ through activation of STAT6. In this study, to evaluate the effects of the induced SERPIN B3/B4 on the apoptosis of $T.$ $gondii$-infected THP-1 cells, we designed and tested various small interfering (si-) RNAs of SERPIN B3 or B4 in staurosporine-induced apoptosis of THP-1 cells. Anti-apoptotic characteristics of THP-1 cells after infection with $T.$ $gondii$ disappeared when SERPIN B3/B4 were knock-downed with gene specific si-RNAs transfected into THP-1 cells as detected by the cleaved caspase 3, poly-ADP ribose polymerase and DNA fragmentation. This anti-apoptotic effect was confirmed in SERPIN B3/B4 overexpressed HeLa cells. We also investigated whether inhibition of STAT6 affects the function of SERPIN B3/B4, and vice versa. Inhibition of SERPIN B3/B4 did not influence STAT6 expression but SERPIN B3/B4 expression was inhibited by STAT6 si-RNA transfection, which confirmed that SERPIN B3/B4 was induced under the control of STAT6 activation. These results suggest that $T.$ $gondii$ induces SERPIN B3/B4 expression via STAT6 activation to inhibit the apoptosis of infected THP-1 cells for longer survival of the intracellular parasites themselves.

Apoptosis inhibitor 5 increases metastasis via Erk-mediated MMP expression

  • Song, Kwon-Ho;Kim, Seok-Ho;Noh, Kyung Hee;Bae, Hyun Cheol;Kim, Jin Hee;Lee, Hyo-Jung;Song, Jinhoi;Kang, Tae Heung;Kim, Dong-Wan;Oh, Se-Jin;Jeon, Ju-Hong;Kim, Tae Woo
    • BMB Reports
    • /
    • 제48권6호
    • /
    • pp.330-335
    • /
    • 2015
  • Apoptosis inhibitor 5 (API5) has recently been identified as a tumor metastasis-regulating gene in cervical cancer cells.However, the precise mechanism of action for API5 is poorly understood. Here, we show that API5 increases the metastatic capacity of cervical cancer cells in vitro and in vivo via up-regulation of MMP-9. Interestingly, API5-mediated metastasis was strongly dependent on the Erk signaling pathway. Conversely, knock-down of API5 via siRNA technology decreased the level of phospho-Erk, the activity of the MMPs, in vitro invasion, and in vivo pulmonary metastasis. Moreover, the Erk-mediated metastatic action was abolished by the mutation of leucine into arginine within the heptad leucine repeat region, which affects protein-protein interactions. Thus, API5 increases the metastatic capacity of tumor cells by up-regulating MMP levels via activation of the Erk signaling pathway. [BMB Reports 2015; 48(6): 330-335]

다단 랜덤화 토너먼트 경쟁방식 및 그의 공정성에 대한 연구 (A study on a multi-stage random tournament competition system and its fairness)

  • 이기원;이정순;심송용
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권4호
    • /
    • pp.923-930
    • /
    • 2015
  • 경쟁 시스템에서 최종 우승자를 결정하기 위해 다양한 방법을 사용한다. 많은 스포츠 경기에서는 1-in-2 토너먼트 방식으로 우승자를 가리거나 이의 변형된 방법으로 우승자를 가린다. 본 연구에서는 일반적인 경기보다 훨씬 많은 경쟁 참여자가 존재하고, 이를 많은 임의의 심사자가 심사하는 상황에서 최종 우승자를 가리는 상황에서 활용할 수 있는 경쟁 시스템의 한 방법을 제안한다. 이와 같이 다수의 경쟁자와 다수의 심사자가 존재하는 상황은 가상공간에서 흔히 보는 각종 앱의 선호도 조사 등에서 발생한다. 본 연구에서는 knock-out 토너먼트를 발전시켜 각 라운드마다 경쟁자를 임의배정하는 다단 랜덤 토너먼트를 제안하고 제안된 방식의 공정성에 대해서 알아본다. 또한 일정한 조건 하에서 특정 심사자가 미치는 심사 영향력을 수치화하여 각 심사자의 영향력을 비교할 수 있게 하였다.

레스베라트롤에 의한 인간 암세포주, A549와 SKOV3의 p53의존적 Apoptosis 유발 (Induction of p53-dependent Apoptosis by Resveratrol in Human Cancer Cells, A549 and SKOV3)

  • 이슬기;남주옥
    • 한국미생물·생명공학회지
    • /
    • 제44권2호
    • /
    • pp.194-200
    • /
    • 2016
  • Resveratrol은 포도, 오디, 땅콩과 같은 많은 과일과 채소에 존재하는 폴리페놀 화합물로써 다양한 생물학적 효과를 가진다고 보고되어있다. 그러나, resveratrol이 A549 폐암세포에서 유도하는 apoptosis에 관여하는 분자적 기전 및 anoikis에 관해서는 명백하게 밝혀지지 않았다. 본 연구에서, 우리는 정상적인 p53 유전자를 갖는 A549 세포에서 resveratrol의 효과를 조사하고, p53 유전자가 결실된 SKOV3 난소암 세포와 그 효과를 비교했다. Resveratrol은 확실하게 SKOV3 세포에 비해 농도, 시간의존적으로 A549 세포의 생존과 증식을 억제했다. 또한 resveratrol은 A549 세포의 apoptosis를 유도했지만 세포의 anoikis 저항성에는 영향을 미치지 않았다. 더불어, p53 유전자 기능이 불완전 소실된(knock-down) A549 세포의 생존과 증식은 resveratrol에 의해 변하지 않았다. 그러므로, 본 연구의 결과는 resveratrol의 항암 효과가 기능을 하는 p53 유전자의 존재에 의존한다는 것을 보여준다. 결론적으로, 우리는 resveratrol이 p53 유전자에 의존적으로 A549 세포에 대해 항암효과를 가진다는 것을 입증했다.

비소세포 폐암에서 Cyclooxygenase-2와 Polo-like Kinase-1의 상관관계 (Relation between Cyclooxygenase-2 and Polo-like Kinase-1 in Non-Small Cell Lung Cancer)

  • 이규화;양석철
    • Tuberculosis and Respiratory Diseases
    • /
    • 제67권4호
    • /
    • pp.303-310
    • /
    • 2009
  • Background: Elevated expression of cyclooxygenase-2 (COX-2) and Polo-like kinase-1 (PLK-1) is observed in a wide variety of cancers. Augmented expression of COX-2 and enhanced production of prostaglandin $E_2(PGE_2)$ are associated with increased tumor cell survival and malignancy; COX-2 has been implicated in the control of human non-small cell lung carcinoma (NSCLC) cell growth. PLK-1 siRNA induced the cell death of lung cancer cells and the systemic administration of PLK-1 siRNA/atelocollagen complex inhibited the growth of lung cancer in a liver metastatic murine model. COX-2 and PLK-1 are involved in proliferation and in cell cycle regulation, and there is a significant correlation between their interaction in prostate carcinoma. Methods: In this study, we investigated the pattern of COX-2 and PLK-1 expression in NSCLC, after treatment with IL-1$\beta$, COX-2 inhibitor and PLK-1 siRNA. Results: Expression of PLK-1 was decreased in A549 COX-2 sense cells, and was increased in A549 COX-2 anti-sense cells. Knock out of PLK-1 expression by PLK-1 siRNA augmented COX-2 expression in A549 and NCl-H157 cells. When A549 and NCI-H157 cells were treated with COX-2 inhibitor on a dose-dependent basis, PLK-1 and COX-2 were reduced. However, when the expression of COX-2 was induced by IL-1$\beta$, the production of PLK-1 decreased. Conclusion: These results demonstrate that COX-2 and PLK-1 are regulated and inhibited by each other in NSCLC, and suggest that these proteins have a reverse relationship in NSCLC.

재조합 대장균에서 fadB 유사효소의 Polyhydroxyalkanoates 합성에 미치는 역할의 규명 (In Vivo Analysis of fadB Homologous Enzymes Involved in Biosynthesis of Polyhydroxyalkanoates in Recombinant Escherichia coli)

  • 최종일;박시재;이상엽
    • KSBB Journal
    • /
    • 제19권4호
    • /
    • pp.331-334
    • /
    • 2004
  • 재조합 E. coli를 이용한 MCL-PHA의 생산에서 fatty acid pathway로부터 PHA 생합성 전구체 물질들이 만들어진다는 사실과 함께 이에 관여하는 enzymes이 밝혀지고 있다. 본 논문에서는 protein homology search로부터 탐색된 paaG와 ydbU genes의 PHA 생합성에서의 역할을 확인하기 위하여 paaG와 ydbU gene이 각각 knock-out된 mutant E. coli strains 를 제작하였다. 제작된 mutant E. coli들은 모균주들보다 낮은 PHA 농도와 함량을 가졌으며, 이러한 결과들로부터 paaG와 ydbU는 fatty acid pathway에서 PHA synthesis의 전구체 물질들을 공급한다는 사실을 확인하였다. 또한, 새로운 FadB homologous enzyme YgfG를 탐색하였으며, ygfG gene이 overexpression된 균주와 ygfG mutant를 제작하여 PHA 합성을 실험한 결과 ygfG도 paaG와 ydbU와 유사한 역할을 한다는 사실을 밝혔다. 이러한 연구결과들은 E. coli에서의 MCL-PHA 단량체들의 합성 경로를 확인하여 효과적인 PHA 생산 균주를 제작할 수 있게 할 것이다.

Telomere association of Oryza sativa telomere repeat-binding factor like 1 and its roles in telomere maintenance and development in rice, Oryza sativa L.

  • Byun, Mi Young;Cui, Li Hua;Lee, Hyoungseok;Kim, Woo Taek
    • BMB Reports
    • /
    • 제51권11호
    • /
    • pp.578-583
    • /
    • 2018
  • Telomeres are specialized nucleoprotein complexes that function to protect eukaryotic chromosomes from recombination and erosion. Several telomere binding proteins (TBPs) have been characterized in higher plants, but their detailed in vivo functions at the plant level are largely unknown. In this study, we identified and characterized OsTRFL1 (Oryza sativa Telomere Repeat-binding Factor Like 1) in rice, a monocot model crop. Although OsTRFL1 did not directly bind to telomere repeats $(TTTAGGG){_4}$ in vitro, it was associated with telomeric sequences in planta. OsTRFL1 interacted with rice TBPs, such as OsTRBF1 and RTBP1, in yeast and plant cells as well as in vitro. Thus, it seems likely that the association of OsTRFL1 with other TBPs enables OsTRFL1 to bind to telomeres indirectly. T-DNA inserted OsTRFL1 knock-out mutant rice plants displayed significantly longer telomeres (6-25 kb) than those (5-12 kb) in wild-type plants, indicating that OsTRFL1 is a negative factor for telomere lengthening. The reduced levels of OsTRFL1 caused serious developmental defects in both vegetative and reproductive organs of rice plants. These results suggest that OsTRFL1 is an essential factor for the proper maintenance of telomeres and normal development of rice.

The Role of Stem Cells and Gap Junctional Intercellular Communication in Carcinogenesis

  • Trosko, James E.
    • BMB Reports
    • /
    • 제36권1호
    • /
    • pp.43-48
    • /
    • 2003
  • Understanding the process of carcinogenesis will involve both the accumulation of many scientific facts derived from molecular, biochemical, cellular, physiological, whole animal experiments and epidemiological studies, as well as from conceptual understanding as to how to order and integrate those facts. From decades of cancer research, a number of the "hallmarks of cancer" have been identified, as well as their attendant concepts, including oncogenes, tumor suppressor genes, cell cycle biochemistry, hypotheses of metastasis, angiogenesis, etc. While all these "hallmarks" are well known, two important concepts, with their associated scientific observations, have been generally ignored by many in the cancer research field. The objective of the short review is to highlight the concept of the role of human adult pluri-potent stem cells as "target cells" for the carcinogenic process and the concept of the role of gap junctional intercellular communication in the multi-stage, multi-mechanism process of carcinogenesis. With these two concepts, an attempt has been made to integrate the other well-known concepts, such as the multi-stage, multi-mechanisn or the "initiation/promotion/progression" hypothesis; the stem cell theory of carcinogenesis; the oncogene/tumor suppression theory and the mutation/epigenetic theories of carcinogenesis. This new "integrative" theory tries to explain the well-known "hallmarks" of cancers, including the observation that cancer cells lack either heterologous or homologous gap junctional intercellular communication whereas normal human adult stem cells do not have expressed or functional gap junctional intercellular communication. On the other hand, their normal differentiated, non-stem cell derivatives do express connexins and express gap junctional intercellular communication during their differentiation. Examination of the roles of chemical tumor promoters, oncogenes, connexin knock-out mice and roles of genetically-engineered tumor and normal cells with connexin and anti-sense connexin genes, respectively, seems to provide evidence which is consistent with the roles of both stem cells and gap junctional communication playing a major role in carcinogenesis. The integrative hypothesis provides new strategies for chemoprevention and chemotherapy which focuses on modulating connexin gene expression or gap junctional intercellular communication in the premalignant and malignant cells, respectively.