Browse > Article

DNA Damage-inducible Phosphorylation of p53 at Ser20 is Required for p53 Stabilization  

Yang, Dong-Hwa (Department of Life Science, College of Natural Sciences, Sogang University)
Rhee, Byung-Kirl (Department of Life Science, College of Natural Sciences, Sogang University)
Yim, Tae-Hee (Department of Life Science, College of Natural Sciences, Sogang University)
Lee, Hye-Jin (Department of Life Science, College of Natural Sciences, Sogang University)
Kim, Jungho (Department of Life Science, College of Natural Sciences, Sogang University)
Publication Information
Animal cells and systems / v.6, no.3, 2002 , pp. 263-269 More about this Journal
Abstract
The p53 tumor suppressor gene is among the most frequently mutated and studied genes in human cancer, but the mechanisms by which it sur presses tumor formation remain unclear. DNA damage regulates both the protein levels of p53 and its affinity for specific DNA sequences. Stabilization of p53 in response to DNA damage is caused by its dissociation from Mdm2, a downstream target gene of p53 and a protein that targets p53 for degradation in the proteosome. Recent studies have suggested that phosphorylation of human p53 at Ser20 is important for stabilizing p53 in response to DNA damage through disruption of the interaction between Mdm2 and p53. We generated mice with an allele encoding changes at Ser20, known to be essential for p53 accumulation following DNA damage, to enable analyses of p53 stabilization in vivo. Our data showed that the mutant p53 was clearly defective for full stabilization of p53 in response to DNA damage. We concluded that Ser20 phosphorylation is critical for modulating the negative regulation of p53 by Mdm2, probably through phosphorylation-dependent inhibition of p53-Mdm2 interaction in the physiological context.
Keywords
Knock-in mouse; p53; Tumor suppressor gene;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Waterman MJ, Stavridi ES, Waterman JL and Halazonetis TD (1998) ATM-dependent activation of p53 invovles dephosphorylation and association with 14-3-3 proteins, Nat Genet 19: 175-178   DOI   ScienceOn
2 Unger T, Sionov RV, Moallem E, Yee CL, Howley PM, Oren M and Haupt Y (1999) Mutation in serines 15 and 20 of human p53 impair its apoptic activity, Oncogene 18: 3205-3212   DOI
3 Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ and Mak T (2000) DNA damage-induced activation of p53 by the checkpoint kinase ChK2, Sicence 287: 1824-1827   DOI   ScienceOn
4 Furnari B, Blasina A, Boddy MN, NcGowan CH, and Russell P (1999) Cdc25 inhibited in vivo and in vitro by checkpoint kinases Cds 1 and Chk1, Mol Cell Biol 10: 833-845   DOI
5 Kapoor M and Lozano G (1988) Functional activation of p53 via phosphorylation following DNA damage by UV but not gamma radiation, Proc Natl Acad Sci USA 95: 2834-2837   DOI
6 Melchionna R, Chen XB, Blasina A and McGowan CH (2000) Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1, Nat Cell Biol 2: 762-765   DOI   ScienceOn
7 Zambetti GP, Bargonneti J, Walker K, Prives C and Levine A (1992) Wild-type p53 mediates positive regulation of gene expression through a specific DNA sequence element, Genes Dev 6: 1143-1152   DOI   ScienceOn
8 Hoess RH and Abremski K (1990) Cre-lox recombination system, Nucleic acids and molecular biology 4: 99-109   DOI
9 Hollstein M, Shomer B, Greenblatt M, Soussi T, Hovig E, Montesano R and Harris CC (1996) Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation, Nucleic Acids Res 24: 141-146   DOI
10 Jacks T, Remington L, Williams BO, Schimitt EM, Halachmi S, Bronson RT and Weinberg RA (1994) Tumor spectrum analysis in p53-mutant mice, Curr Biol 4: 1-17   DOI   ScienceOn
11 Kastan MB and Lozano G (1998) Participation of p53 protein in the cellular response to DNA damage, Cancer Res 51: 6304-6311
12 Kastan MB, Zhan Q, El-Deiry WS, Carrier F, Jacks T, Walsh WV, Plukett BS, Vogelstein B and Fornace AJ, Jr. (1992) A mammalian cell cylce checkpoint pathway utilizing p53 amd GADD45 is defective in ataxia-telangiectasia, Cell 71: 587-597   DOI   ScienceOn
13 Kern SE, Pietenpol JA ,Thiagalingam S, Seymour A, Kinzler KW and Vogelstein B (1992) Oncogenic forms of p53 inhibit p53-regulated gene expression, Science 256: 827-830   DOI
14 Ko LJ and Prives C (1996) p53 : puzzle and paradigm, Genes Dev 10: 1054-1072   DOI   ScienceOn
15 Milne DM, Palmer RH, Campbell DG, and Meek DW (1992) Phosphorylation of the p53 tumor suppressor protein at three N-termianl sites by a novel casein kinase I-like enzyme, Oncogene 7: 1361-1369
16 Khanna KK and Lavin MF (1993) Ionizing radiaton and UV induction of p53 protein by different pathways in ataxiatelangiectasia cells, Oncogene 8: 3307-3312
17 Midgley CA and Lane DP (1997) p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding, Oncogenes 15: 1179-1189   DOI
18 Milne DM, Campbell LE, Campbell DG and Meek DW (1995) p53 is phosphorylated in vitro and in vivo by an ultraviolet radiation-induced protein kinase characteristic of the c-Jun kinase, J Biol Chem 270: 5511-5518   DOI   ScienceOn
19 Shieh SY, Ahn J, Tamai K, Taka Y, and Prives C (2000) The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites, Genes Dev 14: 289-300
20 Khanna KK, Keating KE, Kozolov S, Scot S, Gatei M, Hobson K, Taya Y, Gabrie lli B, Chan D, Lees-Miller SP and Lavin MF (1998) ATM associates with and phosphorylates p53: mapping the region of interaction, Nature Genet 20: 398-400   DOI   ScienceOn
21 Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J and Gu W (2002) Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization, Nature 416: 648-653   DOI   ScienceOn
22 Knippschild U, Milne DM, Campbell LE, DeMaggio AJ, Christenson E, Hoekstra MF and Meek DW (1997) p53 is phosphorylated in vitro and in vivo by the delta and epsilon isoforms of casein kinase 1 and enhances the level of casein kinase 1 delta in response to topoisomerase-directed drugs, Oncogene 15: 1727-1736   DOI
23 Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ and Pavletich NP (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor sppressor transactivation domain, Science 274: 948-953   DOI   ScienceOn
24 Mosner J, Mummenbrauer T, Bauer C, Sczakiel G, Grosse F and Depert W (1995) Negative feedback regulation of wild-type p53 biosynthesis, EMBO J 14: 4442-4449
25 Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tangle DA, Smith S, Uziel T, Sfez S, et al., (1995) A single ataxia telangiectasia gene with a product similar to PI-3 kinase, Science 268: 1749-1753   DOI
26 Sternberg N (1979) Demonstration and analysis of p1 sitespecific recombination using lambda-P1 hybrid phages constructed in vitro, Quant Biol 43: 1143-1146   DOI
27 Ko LJ, Shieh SY, Chen X, Jayaraman L, Tamai K, Taya Y, Prives C and Pan ZQ (1997) p53 is phosphorylated by CDK7-cyclin H in a p36MAT1-dependent manner, Mol Cell Biol 17: 7220-7229
28 Kubbutat MH, Jones SN and Vousden KH (1997) Regulation of p53 stability by Mdm2, Nature 387: 290-303   DOI   ScienceOn
29 Lees-Miller SP, Sakaguchi K, Ullrich SJ, Appella E and Anderson CW (1992) Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53, Mol Cell Biol 12: 5041
30 Levine, AJ (1997) p53, the cellular gatekeeper for growth and division, Cell 88: 323-331   DOI   ScienceOn
31 Ljungman, M (2000) Dial 9-1-1 for p53: mechanisms of p53 activation by cellular stress, Neoplasia 2: 208-225   DOI
32 Lu H, Taya Y, Ikeda M and Levine AJ (1998) Ultraviolet radiation, but not gamma radiation or etoposide-induced DNA damage, results in the phosphorylation of the murine p53 protein at serine-389, Proc Natl Acad Sci USA 95: 6399-6402   DOI
33 Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, and Elledge SJ (2000) Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro, Proc Natl Acad Sci USA 97: 10389-10394   DOI   ScienceOn
34 Sternberg N, Sauer B, Hoess R and Abremski K (1986) Bacteriophage P1 cre gene and its regulatory region. Evidence for multiple promoters and for regulation by DNA methylation, J Mol Biol 187: 197-212   DOI
35 Siliciano JD, Canman CE, Taya Y, Sakaguchi K, Appella E, and Kastan MB (1997) DNA damage induces phosphorylation of the amino terminus of p53, Genes Dev 11: 3471-3481   DOI   ScienceOn
36 Maltzman W and Czyzyk L (1984) UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells, Mol Cell Biol 4: 1689-1694
37 Mayo LD, Turchi JJ, and Berberich SJ (1997) Mdm-2 phosphorylation by DNA-dependent protein kinase prevents interaction with p53, Cancer Res 57: 5013-5016
38 Shieh SY;Ikeda M;Taya Y;Prives C (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2, Cell 91: 325-334   DOI   ScienceOn
39 Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazoneits TD, and Berger SL (1999) p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage, Mol Cell Biol 19: 1202-1209
40 Matsuoka S, Huang M and Elledge SJ (1998) Linkage of ATM to cell cycle regulation by the Chk2 protein kinase, Science 282: 1893-1897   DOI   ScienceOn
41 Attardi LD, Reczek EE, Cosmas C, Demicco EG, McCurrach ME, Lowe SW, and Jacks T (2000) PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family, Genes Dev 14: 704-718
42 Shieh SY, Taya Y and Prives C (1999) DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization, EMBO J 18: 1815-1823   DOI   ScienceOn
43 Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, and Vogelstein B (1993) Oncoprotein MDM2 conceals the activation domain of tumor suppressor p53, Nature 362: 857-860   DOI   ScienceOn
44 Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY, Taya Y, Prives C and Abraham RT (1999) A role for ATR in the DNA damage-induced phosphorylation of p53, Genes Dev 13: 152-157   DOI   ScienceOn
45 Ashcroft M, Kubbutat MH and Vousden KH (1999) Regulation of p53 function and stability by phosphorylation, Mol Cell Biol 19: 1751-1758
46 Oren M,Bienz B,Givol D, Rechavi G and Zakut R (1983) Analysis of recombinant DNA clones specific for the murine p53 cellular tumor antigen, EMBO J 2: 1633-1639
47 Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y, and Ziv Y (1998) Enhanced phosphorylation of p53 by ATM in the response to DNA damage, Science 281: 1674-1677   DOI   ScienceOn
48 Ahn JY, Schwart JK, Piwnica-Worms H, and Canman E (2000) Threonine 68 phosphorylation by Ataxia telangiectasia mutated is required for efficient activation of Chk2 in response to ionizing radiation, Cancer Res 60: 5934-5936
49 Argos P, Landy A, Abremski K, Egan JB, Ljungquist EH, Hoess RH, Kahn ML, Kalionis B, Narayana SVL, Pierson LS, Sternberg N and Leong JM (1986) The intergrase family of site-specific recombinases: regional similarities and global diversity, EMBO J 5: 433-440
50 Blasina A, de Weyer IV, Laus MC, Luyten WH, Parker AF and McGowan CH (1999) A human homologue of the checkpoint kinase Cds 1 directly inhibits Cdc25 phosphatase, Curr Biol 9: 1-10   DOI   ScienceOn
51 Bottger A, Bottger V, Garcia-Echeverria C, Chene P, Hochkeppel HK, Samson W, Ang K, Howard SF, Picksley S.M and Lane DP (1997) Molecular characterization of the hdm2-p53 interaction, J Mol Biol 269: 744-756   DOI   ScienceOn
52 Uesugi M and Verdine GL (1999) The alpha-helical FXXPhiPhi motif in p53: TAF interaction and discrimination by MDM2, Proc Natl Acad Sci USA 96: 14801-14806   DOI
53 Bell DW, Varley JM, Szydlo TE, Kang DH, Waher DC, Shannon KE, Lubratovich M, Verselis SJ, Isselbacher KJ, Fraumeni JF, Birch JM, Li FP, Garber JE and Haber DA (1999) Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome, Science 286: 2528-2531   DOI   ScienceOn
54 Bienz B ,Zakut-Houri R, Givol D and Oren M (1984) Analysis of the gene coding for the murine cellular antigen p53, EMBO J 3: 79-83
55 Blaydes JP and Hupp T (1998) DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site, Oncogene 17: 1045-4052   DOI
56 Blatter C, Tobiasch E, Litfen M, Rahmsdorf HJ and Herrlich P (1999) DNA damage induced p53 stabilization: no indication for an involvement of p53 phosphorylation, Oncogene 18: 1723-1732   DOI
57 Canman CE, Wolff AC, Chen CY, Fornance AJ. Jr. and Kastan MB (1994) The p53-dependent G1 cell cycle checkpoint pathway and ataxia-telangiectasia, Cancer Res 54: 5054-5058
58 Canman CE, Lim DS, Cimprich KA, Taya Y, Tami K, Sakaguchi K, Appella E, Kastan MB and Siliciano JD (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation, Science 281: 1677-1679   DOI   ScienceOn
59 Chehab NH, Malikzay A, Appel M, and Halazonetis TD (2000) Chk2/hCds 1 functions as a DNA damage checkpoint in G(1) by stabilizing p53, Genes Dev 14: 278-288
60 Chaturvedi P, Eng WK, Zhu Y, Mattern MR, Mishra R, Hurle MR, Zhang X, Annan RS, Lu Q, Faucette LF, Scott GF, Li X, Carr SA, Johnson RK, Winkler JD and Zhou BB (1999) Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway, Oncogene 18: 4047-4054   DOI
61 Dumaz N and Meek DW (1999) Serine 15 phosphorylation stimulate p53 transactivation but does not directly influence interaction with HDM2, EMBO J 18: 7002-7010   DOI   ScienceOn
62 Falck J, Mailand N, Syljuasen RG, Bartek J and Lukas J (2001) The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis, Nature 410: 842-847   DOI   ScienceOn
63 Farmer G, Bargonetti J, Jhu H, Friedman R, Prywes R and Prives C (1992) Wild-type p53 activities transcription in vitro, Natures 358: 83-86   DOI   ScienceOn
64 Chehab NH, Malikzay A, Stavridi ES and Halazoneits TD (1999) Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage, Proc Natl Acad Sci USA 96: 13777-13782   DOI
65 Frische M, Hasseler C and Brandner G (1993) Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNA-damaging agents, Oncogene 8: 307-318
66 Giaccia AJ and Kastan MB (1998) The complexity of p53 modulation: emerging patterns from divergent signals, Genes Dev 12: 2973-2983   DOI   ScienceOn
67 Prives C and Hall PA (1999) The p53 pathway, J Pathol 187: 112-126   DOI   ScienceOn
68 Sambrook J, Fritsch EF and Maniatis T (1989) Molecular Cloning: a Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, New Yok
69 Tominaga K, Morisaki H, Kaneko Y, Fujimoto A, Takata T, Ohtsubo M and Hirai M (1999) Role of human Cds1 (Chk2) kinase in DNA damage checkpoint and its regulation by p53, J Biol Chem 274: 31463-31467   DOI
70 Fu L and Benchimol S (1997) Participation of the human p53 3' UTR translational repression and activation following gamma-irradiation, EMBO J 16: 4117-4125   DOI   ScienceOn
71 Haupt Y, Maya R, Kazaz A and Oren M (1997) Mdm2 promotes the rapid degradation of p53, Nature 387: 296-299   DOI   ScienceOn
72 Sakaguchi K, Herrera JE, Saito S, Miko T, Bustin M, Vassilev A, Anderson CW, and Appella E (1998) DNA damage activates p53 through a phosphorylation-acetylation cascade, Genes Dev 12: 2831-2841   DOI   ScienceOn
73 Meek DW (1999) Mechanisms of switching on p53: a role for covalent modification?, Oncogene 18: 7666-7675   DOI   ScienceOn