• Title/Summary/Keyword: knitted fabric

Search Result 158, Processing Time 0.028 seconds

Wearing Performance of Garment for Emotional Knitted Fabrics Made of PTT/Tencel/Cotton MVS Blended Yarns (II) (PTT/Tencel/Cotton 친환경 MVS 혼방사 편성물의 물성에 관한 연구 (II))

  • Kim, Hyun Ah
    • Fashion & Textile Research Journal
    • /
    • v.17 no.6
    • /
    • pp.1020-1029
    • /
    • 2015
  • This paper investigated the wearing performance of knitted fabrics made of air vortex yarns using PTT/tencel/cotton fibres in comparison with ring and compact yarns for emotional garment. Wicking property of knitted fabric made of MVS yarns was worse than those by ring and compact yarns, however, drying property of knitted fabric made of MVS yarns was better than those by ring and compact yarns, which was explained as more water vapor transport due to larger openness between fibres in the MVS yarns than those in the ring and compact yarns. Thermal conductivity of knitted fabric made of MVS was lower than those of ring and compact yarns and maximum heat flow(Qmax) at the transient state of MVS knitted fabric was lower than those of ring and compact yarns, which may be attributed to MVS yarn structure that has parallel fibres in the core part of the yarn and fasciated fibre bundles on the sheath part with roughness on the yarn surface. However, pilling of MVS knitted fabric was better than those by ring and compact yarns, which was caused by less and shorter hairy fibres protruded from MVS yarn surface than those of ring and compact yarns. It was observed that tactile hand of MVS yarn knitted fabrics was stiffer than those of ring and compact yarns knitted fabrics. It was explained by low extensibility and compressibility and high bending and shear rigidities of the MVS yarn knitted fabrics, which resulted in bad wearing performance of MVS knitted fabric.

Wearing Performance and Comfort Property of PTT/Wool/Modal Air Vortex Yarn Knitted Fabrics (PTT/Wool/Modal Air vortex사 편성물의 의류 착용성능과 쾌적물성)

  • Kim, Hyunah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.40 no.2
    • /
    • pp.305-314
    • /
    • 2016
  • This paper investigated the applicable possibility of PTT and wool staple fibers to the air vortex system as high quality yarns for a high emotional and comfort garment. It was found that the tactile hand of vortex yarn knitted fabrics was harsher than ring and compact yarns knitted fabrics. It was observed that formability and sewability of air vortex yarn knitted fabrics seemed worse than ring and compact yarns due to low tensile and compressional resilience and high bending and shear hysteresis of air vortex yarn knitted fabrics. It revealed that wicking and drying rates of air vortex yarn knitted fabric were better than ring and compact yarns; in addition, the heat keepability of vortex yarn knitted fabric was higher than ring and compact yarns due to low thermal conductivity and max heat flow rate ($Q_{max}$). Any difference of thermal shrinkage between air vortex and ring yarn knitted fabrics was not shown, but pilling characteristic of air vortex yarn knitted fabric was superior. However, it was shown that wicking, drying, thermal property and pilling characteristics of air vortex yarn knitted fabric were superior due to air vortex yarn structure with parallel fibers in the core part and periodical and fasciated twists in the sheath part of the yarns.

A FEASIBILITY STUDY ON THE APPLICATION OF THE KNITTED GLASS FABRIC COMPOSITES TO FIXED PROSTHODONTIC RESTORATION IN DENTISTRY (Knitted Glass Fabric 강화 복합레진을 사용한 고정성 치과보철물에 대한 적용성 평가)

  • Chung Jae-Min;Lee Kyu-Bok;Jo Kwang-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.5
    • /
    • pp.429-440
    • /
    • 2002
  • Current dental restorations present a relatively weak resistance to fracture. Owing to their unique mechanical properties, fibre-reinforced polymers are now being considered. Unidirectional or woven continuous fibres, made of glass, polyethylene, carbon or Kevlar, have been evaluated. This study focused on the use of glass fibre knitted fabrics to reinforce acrylate resins, in order to investigate the possibility to construct single crowns as well as three unit bridges. Some points affecting the final composite system were tested ; 1) static strength, with focus on the stress transfer under a occlusal contact point ; 2) modelling of a three nit bridge ; 3) fatigue strength as a posterior three unit bridge material. The study demonstrated that knitted fabric reinforcements are showing an interesting compromise between stiffness, static strength for single crown. For three unit bridge applications in the posterior arch, however knitted glass fabric reinforcements were not strong enough in fatigue An additional reinforcement in the posterior arch fixed partial denture design was recommended.

The Physical Properties of Knitted Fabric with Hanji/Rayon (한지와 레이온 복합사 편성물의 물성)

  • Kim, Su Mi;Song, Wha Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.2
    • /
    • pp.151-158
    • /
    • 2013
  • This study presents basic knitted fabric data on the use of ply yarn with rayon yarn and eco-friendly/high-valued Hanji yarn. Physical properties (gauge, thickness, burst strength, air permeability, stiffness, Qmax, dimensional stability and surface image) of Hanji 100%, rayon 100% and Hanji/rayon 50:50 knitted fabrics are investigated. The results are as follows. Course direction of gauge decrease in the following order: rayon 100% > Hanji/rayon 50/50 > Hanji 100%. In addition wale direction of gauge decrease in the following order: Hanji 100% > Hanji/rayon 50/50 > rayon 50/50. Thickness and air permeability decrease in the following order: Hanji 100% > Hanji/rayon 50/50 > rayon 100%. Burst strength decrease in the following order: rayon 100% > Hanji 100% > Hanji/rayon 50/50. Stiffness and Qmax decrease in the following order: rayon 100% > Hanji/rayon 50/50 > Hanji 100%. Laundry for dimensional stability is knitted fabric with Hanji/rayon 50/50 than rayon 100% and Hanji 100% improved using neutral detergent and stable at $20^{\circ}C$. From surface image observation, the cracks of Hanji 100% and fibrils of rayon 100% decrease when using knitted fabric with Hanji/rayon 50/50.

A Study on the Production Efficiency Considering the Dimensional Change Rate of Circular Knitted Jacket (환편 니트 재킷의 치수변화율을 고려한 생산효율에 관한 연구)

  • Hwang, Song-Lee;Lee, Jin-Hee
    • Fashion & Textile Research Journal
    • /
    • v.18 no.6
    • /
    • pp.776-786
    • /
    • 2016
  • This study intends to suggest production process of circular knitted jackets and dimensional change data of finished clothes after washing. the study provides pattern design method of circular knitted jackets by applying dimensional change. By doing so, the purpose of this study is to increase production efficiency through accurate order in consideration of loss amount of the fabrics in production. With the three fabric materials selected, this study investigated dimensional change of circular knitted jackets after sewing and washing by varying the parts to be attached to padding cloth and with or without inner lining. As for the fabric F-C (including the spandex, thicker and weightier than the other two fabrics), front width shrunk by 4.6%, which showed the biggest shrinkage among the jackets made of test fabrics. Then it suggested design methods of circular knitted jacket patterns to which dimensional change is applied according to materials, and analyzed the amount of fabric required for production by comparison of the materials. When using the fabric F-C without inner lining, there is big dimensional change and more than double amount of fabric is required. It is expected that the research results will be a basic data for pattern design and production process of circular knitted clothing.

Changes of Flame Retardant and Physical Properties of Cotton Knitted Fabrics after Flame Resistant Treatment (면편성물의 방염처리에 의한 방염성과 물성변화)

  • Jee, Ju-Won;Song, Kyung-Geun
    • Fashion & Textile Research Journal
    • /
    • v.5 no.3
    • /
    • pp.273-282
    • /
    • 2003
  • Effect of fixation methods and relaxation treatment on the flame retardant(FR) and physical properties of MDPP/HMM treated cotton weft-knitted fabrics were studied. Combination of four different fixation methods - relaxation, swelling agent treatment, pad dry cure fixation, and wet fixation - were applied to flame retardant finish of cotton weft-knitted fabric with MDPP/HMM. As the results, 1. Swelling agent and wet fixation method helps FR agent penetrate the fiber efficiently. Interlock showed relatively higher values of LOI than single jersey. 2. Interlock showed relatively higher values of bending rigidity(B), shear rigidity(G) and coefficient of friction(MIU) than those of single jersey before and after flame resistant treatment. 3. An increase in internal volume of cotton fiber by relaxation treatment increased the bending rigidity(B), shear rigidity(G) and compressional energy(WC). 4. The cotton weft-knitted fabric treated wet fixation, which crossliked FR agent efficiently, showed higher bending rigidity, shear rigidity(G) and lower compressional energy(WC). Retention of swelling ability of cotton weft-knitted fabrics treated with MDPP/HMM, which increased the internal volume of cotton weft-knitted fabric, showed lower bending rigidity.

A Study on Dyeing Properties and Color Research of Knitted Fabric and by Scoria

  • Chung, In-Hee
    • Journal of Fashion Business
    • /
    • v.11 no.3
    • /
    • pp.79-86
    • /
    • 2007
  • The purpose of this study is to understand the dyeing properties and color analysis of fabrics knitted with ramie, cotton, wool and acrylic by using scoria and to analyze whether the knitted fabrics can be used for industrialization by measuring color fastness after and before sliver-nano process. The following is the conclusions. Firstly, when ramie fabric regarding cotton, wool and acrylic was dyed at the temperature of $50^{\circ}C$ for fifteen minutes by using 10, 25, 50, 100g/ $\ell$ of scoria, dyeing absorption gradually increased up to 50g/ $\ell$, and over the point of 50g/ $\ell$ it showed slow increase. Secondly, regarding saturation, among ramie fabric, wool, cotton and acrylic, wool appears as the lowest brightness. Therefore, it can be dyed with bright color and the highest value. In terms of the value of chromaticity, wool also emerges as the lowest brightness. On the contrary, acrylic showed the lightest red as it had the value of the smallest b. Cotton takes the lightest yellow as the b value of the cotton showed the smallest. Thus, scoria dyestuff is a material that showed strong red and yellow on knitted fabric mixed with wool that is the biggest a. b value. Thirdly, in terms of dyeing fastness, sunlight fastness did not show noticeable differences before and after silver-nano processes, but in terms of washing and friction fastness, the material processed by silver-nano indicated that all knitted fabrics are over 4-5 point. which means silver-nano process can be effective for the industrial applications. As mentioned above, as a result of dyeing knitted fabrics with scoria, this study found a possibility of dyeing in the fabric materials, and if there is deeper dyeing experiments, fastness experiments and speculations, it might be possible to be a big issue just like loess and charcoal.

Shrinkage of Knitted Fabric Depending on the Condition of Air Drying (자연 건조 조건에 따른 니트 소재 수축)

  • Ju, Jeongah;Kyung, Moonsoo;Kim, Jeehoon;Park, Yongwan;Kim, Sangyoung;Oh, Youngkee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.6
    • /
    • pp.1050-1059
    • /
    • 2017
  • Drying processes often cause knitted fabrics to shrink. This study obtains proper drying conditions for in the dryer use that can minimize knitted fabric shrinkage by investigating changes in shrinkage according to drying conditions. The experiment samples were all machine washable plain, mesh, and lacoste knitted fabrics made of 100% cotton. Samples were first washed in a washing machine on a normal cycle. They were then layered on a flat surface in an artificial climate chamber and dried for 24 hours at $20^{\circ}C$ and $40^{\circ}C$, respectively. Shrinkage was measured for 180 minutes at 30 minute intervals after washing. The comparison results of the shrinkage in the washing and drying process indicate that 80.0% and 23.0% shrinkage of plain knitted and lacoste knitted fabrics occurred during the washing process. As the samples dried, the shrinkage of the plain and lacoste knitted fabrics then rapidly increased after approximately 30.0% moisture content. The highest air drying shrinkage occurred over one cycle with insignificant changes in shrinkage after repeated treatments.

Compression Properties of Weft Knitted Fabrics Consisting of Shrinkable and Non-Shrinkable Acrylic Fibers

  • Bakhtiari M.;Najar S. Shaikhzadeh;Etrati S. M.;Toosi Z. Khorram
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.295-304
    • /
    • 2006
  • High-bulk worsted yams with different shrinkable and non-shrinkable acrylic fibers blend ratios are produced and then single jersey weft knitted fabrics with three different structures and loop lengths are constructed. The physical properties of produced yams and compression properties of produced fabrics at eight pressure values (50, 100, 200, 500, 1000, 1500 and $2000 g/cm^2$) were measured using a conventional fabric thickness tester. Then, weft-knitted fabric compression behavior was analyzed using a two parameters model. It is found that at 40 % shrinkable fibre blending ratio the maximum yam bulk, shrinkage, abrasion resistance and minimum yarn strength are obtained. It is also shown that high-bulk acrylic yarn has the highest elongation at 20 % shrinkable fibre blend ratio. The statistical regression analysis revealed that the compression behavior of acrylic weft-knitted fabrics is highly closed to two parameter model proposed for woven fabrics. It is also shown that for weft-knitted structure, there is an incompressible layer (V') which resists against high compression load. Acrylic weft-knitted fabrics with knit-tuck structure exhibit higher compression rigidity and lower softness than the plain and knit-miss structures. In addition, at 20 % shrinkable fibre blend ratio, the high-bulk acrylic weft-knitted fabrics are highly compressible.

Effect of Resin Finishing on the Physical Properties of the Knitted Fabrics (수지처리가 환편 니트 소재의 물성에 미치는 영향)

  • Kwon Young-Ah;Park Jong-Sik
    • Textile Coloration and Finishing
    • /
    • v.18 no.3 s.88
    • /
    • pp.23-30
    • /
    • 2006
  • The bending properties, wrinkle resistance, and fabric retention behaviors of cotton knitted fabrics in the wale and course directions were studied for their dependence upon resin finishing, knit structure, and washing cycles. Stiffness, wrinkle recovery angles, and dimensional stability were investigated before and after resin finishing and laundering. It has been found that any change in the physical properties of the knitted fabrics with respect to knit structure and fabric directions are related to accompanying modifications to the state of the fiber properties. The decrease of fabric shrinkage rates and wrinkle recovery properties from increasing laundering cycles is related with resin incorporated on the fiber surface. This study shows that resin finishing on knitted fabrics can be performed only to improve fabric retention properties with reduced wrinkle recovery properties.