• Title/Summary/Keyword: knee joint musculoskeletal system

Search Result 28, Processing Time 0.025 seconds

Nonlinear FES Control of Knee Joint by Inversely Compensated Feedback System

  • Eom Gwang-Moon;Lee Jae-Kwan;Kim Kyeong-Seop;Watanabe Takashi;Futami Ryoko
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.302-307
    • /
    • 2006
  • The aim of applying Functional Electrical Stimulation (FES) is to restore a person's motor function by directly supplying the controlled electrical currents to the site of the paralyzed muscles. However, most clinically utilized FES systems have adapted an open-loop control scheme. Recently the closed-loop control scheme has been considered for setting up the FES system, but due to the inherent nonlinearities in the musculoskeletal system, the nonlinearities were not fully compensated and it caused the oscillatory responses for tracking the output variables. In this study, a nonlinear controller model that has two inverse compensation units is proposed with the compromising feedback linearization method and this will eventually be used to design the FES control system for stimulating a knee joint musculoskeletal system.

Effects of Prosthetic Mass Distribution on Musculoskeletal System during Amputee Gait (의지 보행시 의지 무게 분포가 근골격계에 미치는 영향)

  • Bae, Tae-Soo;Choi, Hwan;Kim, Shin-Ki;Mun, Mu-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.130-137
    • /
    • 2007
  • The optimized prosthetic mass distribution was a controversial problem in the previous studies because they are not supported by empirical evidence. The purpose of the present study was to evaluate the effect of prosthetic mass properties by modeling musculoskeletal system, based on the gait analysis data from two above-knee amputees. The joint torque at hip joint was calculated using inverse dynamic analysis as the mass was changed in knee and foot prosthetic components with the same joint kinematics. The results showed that the peak flexion and abduction torque at the hip joint were 5 Nm and 15 Nm when the mass of the knee component was increased, greater than the peak flexion and abduction torque of the control group at the hip joint, respectively. On the other hand, when the mass of the foot component was increased, the peak flexion and abduction torque at the hip joint were 20 Nm and 15 Nm, greater than the peak flexion and abduction torque of the control, respectively. The hip flexion torque was 4.71-fold greater and 7.92-fold greater than the hip abduction torque for the knee mass increase and the foot mass increase on the average, respectively. Therefore, we could conclude that the effect of foot mass increase was more sensitive than that of knee mass increase for the hip flexion torque. On the contrary, the mass properties of the knee and foot components were not sensitive for the hip abduction torque. In addition, optimized prosthetic mass and appropriate mass distributions were needed to promote efficiency of rehabilitation therapy with consideration of musculoskeletal systems of amputees.

Development of a Musculoskeletal Model for Functional Electrical Stimulation - Noninvasive Estimation of Musculoskeletal Model Parameters at Knee Joint - (기능적 전기자극을 위한 근골격계 모델 개발 - 무릎관절에서의 근골격계 모델 특성치의 비침습적 추정 -)

  • 엄광문
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.293-301
    • /
    • 2001
  • A patient-specific musculoskeletal model, whose parameters can be identified noninvasively, was developed for the automatic generation of patient-specific stimulation pattern in FES. The musculotendon system was modeled as a torque-generator and all the passive systems of the musculotendon working at the same joint were included in the skeletal model. Through this, it became possible that the whole model to be identified by using the experimental joint torque or the joint angle trajectories. The model parameters were grouped as recruitment of muscle fibers, passive skeletal system, static and dynamic musculotendon systems, which were identified later in sequence. The parameters in each group were successfully estimated and the maximum normalized RMS errors in all the estimation process was 8%. The model predictions with estimated parameter values were in a good agreement with the experimental results for the sinusoidal, triangular and sawlike stimulation, where the normalized RMS error was less than 17%, Above results show that the suggested musculoskeletal model and its parameter estimation method is reliable.

  • PDF

Automated Phase Identification in Shingle Installation Operation Using Machine Learning

  • Dutta, Amrita;Breloff, Scott P.;Dai, Fei;Sinsel, Erik W.;Warren, Christopher M.;Wu, John Z.
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.728-735
    • /
    • 2022
  • Roofers get exposed to increased risk of knee musculoskeletal disorders (MSDs) at different phases of a sloped shingle installation task. As different phases are associated with different risk levels, this study explored the application of machine learning for automated classification of seven phases in a shingle installation task using knee kinematics and roof slope information. An optical motion capture system was used to collect knee kinematics data from nine subjects who mimicked shingle installation on a slope-adjustable wooden platform. Four features were used in building a phase classification model. They were three knee joint rotation angles (i.e., flexion, abduction-adduction, and internal-external rotation) of the subjects, and the roof slope at which they operated. Three ensemble machine learning algorithms (i.e., random forests, decision trees, and k-nearest neighbors) were used for training and prediction. The simulations indicate that the k-nearest neighbor classifier provided the best performance, with an overall accuracy of 92.62%, demonstrating the considerable potential of machine learning methods in detecting shingle installation phases from workers knee joint rotation and roof slope information. This knowledge, with further investigation, may facilitate knee MSD risk identification among roofers and intervention development.

  • PDF

Clinical Characteristics of Hip Joint Rotations and Knee Adduction Moment through 3D Gait Analysis (3차원 보행분석을 통한 무릎 모음 모멘트와 고관절 내외회전의 임상적 특성)

  • Kim, Yongwook;Kang, Seungmook
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.5 no.4
    • /
    • pp.41-48
    • /
    • 2017
  • Purpose : The purpose of this study was to verify the relationships among the knee adduction moment, hip rotation range, strength of hip rotators, and Foot Posture Index of healthy young adults. Method : Thirty-two healthy adults(24 male, 8 females) participated in this study. Subjects performed 5 walking trials to evaluate the knee adduction moments using a three-dimensional motion analysis system. Hip rotation ranges and hip rotator strengths were measured using a standard goniometer and a handheld dynamometer, respectively. The mean of three trials of clinical tests was used for data analysis. Results : The first peak knee adduction moment was significantly correlated with the hip rotation ranges and hip rotator strengths (P<.05). The second peak knee adduction moment was showed significant correlations with hip external rotation and rotation ratio. There were no correlations between Foot Posture Index and all knee adduction moments (P>.05). Conclusion : This study suggests that imbalances of the range of motion and strength of the internal and external rotation of the hip joint can affect knee adduction moments. The impact may exacerbate musculoskeletal disorders such as osteoarthritis of the knee. Therefore, further studies should be conducted to evaluate the effects of clinical interventions to correct these imbalances on the reduction of the knee adduction moments in patients with knee osteoarthritis.

The Effect Spiral Way Movement of a Trunk Exerts on the Movement Ability (체간의 나선방향운동이 운동능력에 미치는 효과)

  • Lee, In-Hak;Nam, Taek-Gil
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.5 no.2
    • /
    • pp.35-45
    • /
    • 2007
  • The purpose of this study was to examine spiral way movement of a trunk exerts on the movement ability. The details established to achieve for this article. This examination confirmed the weight, weight/height2 index, ratio of lumbar to pelvic, musculoskeletal quantity, push up for 2 minute, pitch a ball and voluntary isometric contraction with flexion and extension of knee joint of the subjects with spiral direct movement. Healthy eighteen subjects who understand fully the significance of procedure, consented to a plan, without neuromuscular disease were participated in two groups of experiment. The group were a spiral movement(9), rectilinear movement(9). Trunk movement tested 2 sessions of a spiral movement and rectilinear movement with a push up for 2 minute, 5days per a week, for the 4 weeks. This experiment tested 3 times with a sufficient rest for fatigue limitation. An analysis of the results used a paired samples t-test for difference from before and after experiment. The following results were obtained; At an internal change of the body, the musculoskeletal quantity was increased significantly to spiral movement group, but the weight was increased significantly, the musculoskeletal quantity was not significant to rectilinear movement. The movement ability evaluation for a external change was increased significantly in a push up for 2 minute, pitch a ball, isometric contraction with extension of knee joint of a spiral movement group, but a push up for 2 minute was increased significantly in a push up for 2 minute on the abdominal muscle training of a rectilinear movement group. As compared with a rectilinear movement, a spiral movement was more effect by cooperation with nerve and musculoskeletal system and an increase in movement ability was caused by learning acknowledgment, muscular reeducation. These results lead us to the conclusion that a spiral movement of trunk was more effect than a rectilinear movement, the coordination of nerve and musculoskeletal system was of importance of Multi-direction movement. Therefore, A further studies concerning the therapeutic exercise intervention and active-dynamic analysis could enhance the development of the most effect on the trunk.

  • PDF

Treatment of Giant Cell Tumor Around Knee - by Intralesional Excision Using High Speed Burr and Methylmethacrylate - (슬관절 주변에 발생한 거대세포종의 치료 - 고속 바(High-Speed Burr)와 골 시멘트를 이용한 병소 내 절제술 -)

  • Park, Jong-Hoon;Lee, Soo-Yong;Jeon, Dae-Geun;Cho, Wan-Hyung;Song, Won-Seok;Kim, Jin-Wook;Koh, Han-Sang
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.11 no.2
    • /
    • pp.160-167
    • /
    • 2005
  • Purpose : Distal femur and proximal tibia are the common sites affected by giant cell tumor of bone. There are a variety of treatment modality including wide excision and intralesional curettage. We evaluated the local recurrence rates and the post-operative functional scores of giant cell tumors around knee joint and investigated the identification of possible prognostic factors for recurrence. Materials and Methods: We reviewed 41 patients pathologically confirmed as giant cell tumors around knee joint that have undergone intralesional curettage using high-speed burr and methylmethacrylate. We evaluated the recurrence rate and post-surgical functional score and possible prognostic factors for recurrence, such as, gender, age, tumor location, size, subchondral invasion, intra-articular invasion and the Campanacci Grades. Mean follow up period was 50 (12-122) months. Results: The recurrence rate was 17% and mean recurrence onset was 10 months postoperatively. According to Musculoskeletal Tumor Society (MSTS) functional evaluation system, the average score was 27.8(93%) and 78% had excellent function. According to our study, suspected prognostic factors revealed not significant for recurrence. Conclusion: We found no significant recurrence related factors. Intralesional excision with high-sped burring and PMMA provides a low recurrence rate, similar to others in the literature, and good functional scores.

  • PDF

Effects of Artificial Leg Length Discrepancies on the Dynamic Joint Angles of the Hip, Knee, and Ankle During Gait

  • Kim, Yong-Wook;Jo, Seung-Yeon;Byeon, Yeoung-In;Kwon, Ji-Ho;Im, Seok-Hee;Cheon, Su-Hyeon;Kim, Eun-Joo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.1
    • /
    • pp.53-61
    • /
    • 2019
  • PURPOSE: This study examined the dynamic range of motion (ROM) of the hip, knee, and ankle joint when wearing different shoe sole lifts, as well as the limb asymmetry of the range according to the leg length discrepancy (LLD) during normal speed walking. METHODS: The participants were 40 healthy adults. A motion analysis system was used to collect kinematic ROM data. The participants had 40 markers attached to their lower extremities and were asked to walk on a 6 m walkway, under three different shoe lift conditions (without an insole, 1 cm insole, and 2 cm insole). Visual3D professional software was used to coordinate kinematic ROM data. RESULTS: Most of the ROM variables of the short limbs were similar under each insole lift condition (p>.05). In contrast, when wearing a shoe with a 2 cm insole lift, the long limbs showed significant increases in flexion and extension of the knee joint as well as; plantarflexion, dorsiflexion, pronation, eversion, and inversion of the ankle joint (p<.05). Of the shoes with the insole lifts, significant differences in all ROM variables were observed between the left and right knees, except for the knee internal rotation (p<.05). CONCLUSION: As the insole lift was increased, more ROM differences were observed between the left and right limbs, and the asymmetry of the bilateral lower limbs increased. Therefore, appropriate interventions for LLD are needed because an artificial mild LLD of less than 2.0 cm could lead to a range of musculoskeletal problems of the lower extremities, such as knee and ankle osteoarthritis.

Effects of Pressure Biofeedback Unit Application on Muscle Strength and Balance in Total Knee Arthroplasty Patients during Exercise for Strengthening the Knee Extensor Muscle (무릎 폄근 강화 운동 동안 압력 생체되먹임 장비 적용이 무릎관절 전치환술 환자들의 근력과 균형에 미치는 영향)

  • Park, Jin;Park, Han-Kyu
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.1
    • /
    • pp.101-108
    • /
    • 2021
  • Purpose : The purpose of this study is to verify the effect of selective muscle strengthening of the knee joint extensor muscles using a pressure biofeedback unit to improve knee extensor strength and the balance ability of total knee replacement patients. Through this, we tried to provide clinical information. Methods : In this study, 12 patients with total knee replacement were recruited from a rehabilitation hospital. They were divided into two groups: a feedback group (n=6) and a control group (n=6). All patients received 30 minutes of continuous passive motion and leg-strengthening exercises for 15 minutes five times a week for two weeks. Subjects performed knee extension exercises with or without biofeedback units in the sitting position. The knee extensor strength and balance ability were measured before and after exercise. Knee extensor strength was measured by Biodex system 3 and balance ability was measured by Balancia software. Results : Both the experimental group and the control group showed a significant difference in the muscle strength of the knee joint extensor muscles after intervention (p<.05). In comparison, the experimental group showed a significant difference than the control group (p<.05). Both the experimental group and the control group showed a significant difference in the velocity average, path length, area 95 % center of pressure (COP), weight distribution, five times sit to stand test (FTSST) after intervention. In comparison, the experimental group showed a significant difference in velocity average, area 95 % COP, and FTSST than the control group (p<.05). Conclusion : In order to strengthen the knee extensor muscle and improve the balance ability in total knee replacement patients, it is necessary to consider providing pressure biofeedback unit during leg strengthening exercises.

Implementation of FES Cycling using only Knee Muscles : A Computer Simulation Study (슬관절 근육만을 이용한 FES 싸이클링 : 컴퓨터 시뮬레이션 연구)

  • 엄광문;김철승;하세카즈노리
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.171-179
    • /
    • 2004
  • The purpose of this study is to generate cycling motion for FES (functional electrical stimulation) using knee muscles only. We investigated the possibility by simulation. The musculoskeletal model used in this simulation was simplified as 5-rigid links and 2 muscles (knee extensor and flexor). For the improvement of the present feedforward control in FES, we included feedback path in the control system. The control system was developed based on the biological neuronal system and was represented by three sub-systems. The first is a higher neuronal system that generates the motion command for each joint. The second is the lower neuronal system that divides the motion command to each muscle. And the third is a sensory feedback system corresponding to the somatic sensory system. Control system parameters were adjusted by a genetic algorithm (GA) based on the natural selection theory. GA searched the better parameters in terms of the cost function where the energy consumption, muscle force smoothness, and the cycling speed of each parameter set (individual) are evaluated. As a result, cycling was implemented using knee muscles only. The proposed control system based on the nervous system model worked well even with disturbances.