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Abstract: Roofers get exposed to increased risk of knee musculoskeletal disorders (MSDs) at 

different phases of a sloped shingle installation task. As different phases are associated with 

different risk levels, this study explored the application of machine learning for automated 

classification of seven phases in a shingle installation task using knee kinematics and roof slope 

information. An optical motion capture system was used to collect knee kinematics data from nine 

subjects who mimicked shingle installation on a slope-adjustable wooden platform. Four features 

were used in building a phase classification model. They were three knee joint rotation angles (i.e., 

flexion, abduction-adduction, and internal-external rotation) of the subjects, and the roof slope at 

which they operated. Three ensemble machine learning algorithms (i.e., random forests, decision 

trees, and k-nearest neighbors) were used for training and prediction. The simulations indicate that 

the k-nearest neighbor classifier provided the best performance, with an overall accuracy of 

92.62%, demonstrating the considerable potential of machine learning methods in detecting shingle 

installation phases from workers knee joint rotation and roof slope information. This knowledge, 

with further investigation, may facilitate knee MSD risk identification among roofers and 

intervention development. 
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1. INTRODUCTION 

Residential roofers spend more than 75% of their working time in awkward kneeling postures 

while performing shingling activities on sloped rooftops [1]. Due to prolonged and repeated 

awkward kneeling, roofers frequently encounter significant amount of rotation in their knee joints. 

Roof slope and awkward kneeling postures have been identified as contributing risk factors of 

work-related knee musculoskeletal disorders (MSDs) in the roofing community [2]. The authors’ 

prior work demonstrated that roofers get exposed to increased risk of knee MSDs at different phases 

of a sloped shingle installation task [3]. Some of the phases are relatively riskier than others in 

terms of awkward knee joint rotation. For example, roofers get exposed to the highest amount of 

awkward knee joint rotation during placing and nailing shingles; hence these are potentially the 

two riskiest phases of shingle installation that may lead to development of knee MSDs. To avoid 

potential injuries or disorders, it is crucial to identify if a roofer is spending an unusual amount of 

time in a particular phase, especially in relatively riskier phases, such as placing and nailing 
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shingles, with greater awkward rotation and repetition. This requires automated and accurate 

categorization of each knee joint rotation angle by understanding the postural differences among 

different shingling phases, based on the activities roofers perform at residential roofing task. 

However, knowing if knee joint rotation angles are able to accurately identify the activities of the 

phases of shingle installation has not been identified in the literature. This study focuses on 

investigation of the application of machine learning for automated identification of seven phases 

of a shingle installation task, namely: 1) reaching for shingles (P1), 2) placing shingles (P2), 3) 

grasping the nail gun (P3), 4) moving to the first nailing position (P4), 5) nailing shingles (P5), 6) 

replacing the nail gun (P6), and 7) returning to upright position (P7), using knee kinematics data 

and roof slope information. A simulated laboratory experiment was conducted to examine these 

phases. Three supervised machine learning classifiers were trained to classify the seven phases 

using knee kinematics variables and roof setting data. The findings may help understand if machine 

learning application can be extended to develop effective interventions, such as, an automated 

activity monitoring system that uses knee joint rotations and roof slope observations as informative 

sources to facilitate knee MSDs risk identification among roofers in roofing jobsites.  

2. BACKGROUND 

There has been an increasing number of studies that utilize machine learning to classify human 

activities and its associated postures in occupational tasks. For example, in the construction 

industry, supervised machine learning methods were used  to identify different awkward postures 

of construction workers [4,5], to detect inadequate posture of workers at work [6], calculate 

ergonomic risks in occupational tasks associated with overexertion [7], for awkward posture 

recognition [8], to analyze the handler’s foot placement strategies during lifting load [9], to identify 

safe and productive pose of mason workers [10] and to predict injury type, energy type, and body 

part during construction task [11]. In the area of biomechanics and gait research, machine learning 

has been used to detect lying postures [12], sitting posture [13], surface- and age-related differences 

in walking [14] and changes in gait parameters [15]. Among multiple machine learning algorithms 

utilized in these works, random forests, decision trees, k-nearest neighbors, and support vector 

machines are most widely used for awkward posture recognition and activity classification which 

have proved promising in classification and detection, with an accuracy ranging from 83% to 98%. 

However, it remains unknown if these machine learning algorithms can contribute to the activity 

recognition in construction roofing tasks. To the best of the authors’ knowledge, there is no study 

that has analyzed the postural differences involved at different phases of a roofing shingle 

installation task by means of classifying the phases using knee kinematics and roof setting 

information. Therefore, there is a lack of knowledge about the possibility of automated recognition 

of roofers’ activity during shingle installation and identification of the risky phases with the 

application of machine learning. 

3. RESEARCH OBJECTIVE 

The objective of this study was to analyze the effectiveness of machine learning methods to 

classify different phases of a residential shingle installation roofing task, specifically, to determine 

if knee kinematics (knee joint rotations) of roofers and roof setting information (roof slope) at 

which they operated, can be used to distinguish among different phases of shingle installation.  

4. METHODOLOGY 
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A schematic overview of the research methodology is displayed in Figure 1. A laboratory-based 

experiment was conducted where nine participants simulated a roofing shingle installation task on 

a sloped platform, mimicking the roof surface. Trajectory data of the participants were collected 

during simulation using an optical motion capture system equipped with retroreflective markers. 

The markers’ coordinates were further processed to compute the knee joint rotation angles along 

sagittal (flexion), coronal (abduction-adduction), and transverse plane (internal-external rotation). 

These rotation angles together with roof slope angle were used as features for classifying the 

phases. Then, feature data were divided into separate training, validation and testing sets. The 

training and validation sets were used to build three supervised and non-parametric machine 

learning classification models - random forest (RF), decision tree (DT), k-nearest neighbors 

(KNN); the testing set was used as a hold-out set that represented the data that had never been used 

in training, to evaluate the performance of the built models. Finally, the performances of the three 

classification models were compared to decide the single best classifier that could provide the most 

accurate results.  

 

Figure 1. Overview of the research methodology 

5. EXPERIMENT AND IMPLEMENTATION 

5.1. Participants 

This study included nine male participants [26.1 years (mean) ±5.6 years (standard deviation), 

180.2 cm (mean) ±6.1 cm (standard deviation), and 99.7 kg (mean) ±27.6 kg (standard deviation)] 

without any prior roofing experience in the experiment. No participant was suffering from any 

known MSD or neurological diseases. The research protocol was approved by both the Institutional 

Review Boards (IRBs) of the National Institute for Occupational Safety and Health (NIOSH) and 

West Virginia University. 

5.2. Instruments and data collection procedure 

A VICON optical motion capture system equipped 

with 14 MX Vicon cameras (Oxford, UK) was used to 

collect the segment endpoint data of the participants. 

Forty-two (42) retroreflective markers for motion 

capture were placed bilaterally on the lower extremities 

of the participants including feet, heels, toes, ankles, 

shanks, knee joints, thighs, and hip joints (Figure 2).  

Three-dimensional (3D) coordinates of these 

markers (trajectory data) were provided by the VICON 

optical motion capture system which were 

subsequently used to calculate the knee joint rotation 

angles. A 1.2 ×1.6 m custom-made adjustable wood 

platform was used to mimic the roof surface for shingle installation. A battery powered lift would 

raise the roof platform which could be adjusted to a slope angle ranging from 0° to over 30° by two 

sets of wooden legs. More details on the data collection procedure are available in reference [2].  

 

  Figure 2. Roofing marker setup [3]  
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The experiment was conducted in the NIOSH Biomechanics Laboratory. The participants were 

fitted with motion markers for kinematic calibration and data collection. For data collection, 

subjects would first assume a deep kneeling posture on the residential roof. When subjects were 

instructed to start, they first reached for and placed two shingles in front of them. Then they picked 

up the nail gun from their right side and mimicked affixing six nails (three in each) into the two 

shingles side by side on the roof simulator, starting on the left and moving to the right of the shingle. 

Once finished, the participants replaced the nail gun and returned to their resting/starting position. 

Similar to a previous study done by the authors, the entire shingle installation could be divided into 

seven phases, as depicted in Figure 3 [3]. Each participant performed the simulated shingle 

installation task on the roof simulator at three slope angles — 0°, 15°, and 30°. At each slope angle, 

the requested task was repeated five times. This resulted in a total of 45 trials data (5 trials × 9 

participants) at each of the slope angles. All data were recorded at a sampling rate of 100 Hz. 

 

Figure 3. Seven phases of shingle installation process 

5.3. Data processing 

 Trajectory data (coordinates of the markers) captured by VICON were filtered in Visual 3D 

(C-Motion, Germantown, Maryland), using a 4th order Butterworth filter with a 6Hz cut off. Using 

these trajectory data, knee joint flexion, abduction-adduction and internal-external rotation were 

computed using the method provided by [16]. These knee joint rotations and roof slope angles were 

used as input feature set as summarized in Table 1. 

Table 1. Collected variables (features) 

Features Unit Variable type Range/value 

Flexion (FL) Degree (deg) Numerical 77° to 163° 

Abduction-adduction (AB_AD) Degree (deg) Numerical -18° to 18° 

Internal-external rotation (IN_EX) Degree (deg) Numerical -22° to 32° 

Roof slope (S) Degree (deg) Categorical 0°, 15° and 30° 

5.4. Training and evaluation of classifiers 
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A total of 148,574 time-series data points of knee joint rotation angles were collected from 45 

trials data for three roof slope angles. Ninety percent of the feature data were used for training and 

validation, and the remaining ten percent (hold-out) were used for testing. For building the 

classification models with minimized bias, variance, and overfitting, a 10-fold cross validation was 

conducted for each classification approach where all observations in the training and validation set 

were randomly assigned to 10 separate folds (10% each). Then the classifier was trained using 9 of 

the folds and validated using the remaining fold. The accuracies obtained from the 10 resulting 

folds were thus averaged to provide the mean cross validation accuracy for the input feature set. 

During the building process of each classification model, the classifier’s specific parameters were 

tuned to obtain the optimal performance from the classifiers according to the procedures described 

in  [17–19]. For each classifier, after parameter tuning, the best performing model was determined 

by the highest mean cross-validation accuracy. 

The testing dataset (hold-out) was used to evaluate the prediction performance of each classifier 

on untrained data. Specifically, the predicted values were compared with the ground truth by 

applying three performance metrics: (a) overall accuracy (ratio of correctly predicted observations 

to the total observations), (b) Precision score (number of observations correctly predicted over the 

number of observations predicted), (c) Recall score (number of observations correctly predicted 

over the actual number of observations that should have been returned correctly), (d) F1 score 

(harmonic mean of precision and recall), and (e) Kappa index (weighted average of Precision and 

Recall that indicates agreement between predicted observations and ground truth observations). 

The training and evaluation process was carried out for each of the three classifiers. After 

computing the mean cross-validation accuracy, overall accuracy, precision, recall, F1 score and 

Kappa index for each classifier, the values of these performance metrics computed for all the three 

classifiers were compared. The classifier with the highest mean cross-validation accuracy, overall 

accuracy, precision, recall, F1 score, and Kappa index values were deemed to provide the best 

phase classification results and hence finally selected as the best performing phase classification 

model. Each classification algorithm was applied using the standalone Python programming 

language (version 3.6.4). 

6. RESULTS 

Mean cross-validation accuracy along with standard deviations and the lowest cross-validation 

accuracy obtained from different classifiers are shown in Table 2.  

Table 2: Mean cross-validation accuracy of phase classification 

Classifier 
Mean Cross-validation 

accuracy ± standard deviation 

Lowest cross-validation 

accuracy (%) 

DT 87.00 ± 0.0058 86.63 

RF 90.87 ± 0.0041 90.55 

KNN 92.16 ± 0.0041 91.79 

 

For different classifiers, overall accuracy, F1 score, precision score, recall score and Kappa index 

are provided in Table 3. 

Table 3: Performance metrics of three classification approaches 

Classifier 
Overall 

accuracy (%) 

F1 

score 

Precision 

score 

Recall 

score 

Kappa 

index 

DT 87.29 0.8729 0.8730 0.8729 0.8407 
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RF 91.12 0.9106 0.9107 0.9112 0.8880 

KNN 92.62 0.9260 0.9220 0.9262 0.9020 

 

Tables 2 and 3 show the KNN classifier was the most accurate in differentiating among the seven 

phases. An overall classification accuracy of 92.62% and mean cross-validation accuracy of 

92.16% was achieved by this classifier. The highest precision, recall and F1 scores (0.9220, 0.9262, 

and 0.9260 respectively) were also obtained from this classifier. High precision relates to low false 

positive rates, while high recall relates to a low false negative rate in the prediction. F1-score 

indicating the harmonic mean of precision and recall with a value close to 1 gives a better indication 

of the KNN classifier’s ability to correctly identify the phases that standard classification accuracy 

alone. Kappa index value of 0.902 indicates an excellent agreement between the test data and the 

predicted data as a range of 0.81 to 1.00 indicates almost a perfect agreement.  

Table 4: Confusion matrix by KNN (k=1) classifier using four features 

  Class 
Actual 

Total 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝒊  
P1 P2 P3 P4 P5 P6 P7 

P
re

d
ic

te
d

 

P1 1534 25 1 5 9 10 43 1627 0.943 

P2 35 4878 79 79 49 30 32 5182 0.941 

P3 3 63 661 34 9 3 4 777 0.851 

P4 4 51 35 1153 38 23 11 1315 0.877 

P5 12 59 9 46 2933 49 20 3128 0.938 

P6 9 24 3 15 40 1054 26 1171 0.900 

P7 52 20 7 5 8 17 1549 1658 0.934 

  

Total 1649 5120 795 1337 3086 1186 1685 14858 
 

𝑹𝒆𝒄𝒂𝒍𝒍𝒊 0.930 0.953 0.831 0.862 0.950 0.889 0.919  

 

Table 4 represents the confusion matrices by KNN classifier, where per-class classification 

accuracies in terms of precision and recall have been provided. The diagonal elements of the 

confusion matrices represent the number of observations for which the predicted class is the same 

as the actual class, while off-diagonal elements are those that are not predicted correctly by the 

classifier. The higher the diagonal values of the confusion matrix the better, indicating that the 

classifier could make many correct predictions. For example, in Table 4, Precision1 0.943 of class 

P1 indicates that, out of the total number of observations classified as P1, 94.3% were correct. A 

Recall value of 0.930 indicates that out of all the observations that actually belong to class P1, 93% 

were classified as P1. 

7. DISCUSSION AND CONCLUSION 

The purpose of the current study was to investigate the application of machine learning to 

classify roofers’ activities in shingle installation process using knee joint rotation and roof slope 

information. Three classification methods - decision tree, random forest, and k-nearest neighbors - 

were tested in this study. The performance of the classifiers was assessed using 10-fold cross-

validation technique to avoid overfitting. The classifiers were evaluated by using an untrained test 

dataset, which assessed whether including new data collected in future observations to existing data 

would result in acceptable detection and classification of the shingle installation phases. The 
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classification result suggested that the highest testing accuracy of 92.62% was obtained by the KNN 

classifier. Although several studies have focused on awkward posture recognition, there is limited 

information on its identification in a work context. As roofers encounter both awkward postures 

and repetitive motions during shingle installation,, which are considered to be major contributing 

factors of MSDs, knee MSDs incident rate is also the highest among roofers. Proper identification 

of these two factors and the duration roofers are spending in awkward posture and repetitive 

motions can minimize the exposures of the roofers and alleviate the chances of knee MSDs. This 

study has demonstrated the discriminant ability of machine learning to recognize the shingling 

phases based on roofers’ knee joint rotation angles and residential roof setting information where 

they operate. The current study has implications to both researchers and practitioners in the field 

of occupational safety and health and in the construction industry. There is great potential for the 

implementation of machine learning, along with any non-invasive biomechanical device or inertial 

measurement units (IMUs) capable of measuring knee rotational kinematics in dynamic movement, 

which can help develop automated activity monitoring system as an intervention for the roofers. In 

this way, roofers’ postures can be continuously monitored and evaluated throughout the entire 

sloped shingle installation task. It can also be observed if a worker is spending an unusual amount 

of time in a particular phase, especially a risky one with greater awkward rotation and repetition, 

such as placing and nailing.  

This study has several limitations. First, only knee kinematics and roof slope information were 

used as features in this study. Activation of the knee postural muscles were not considered. 

Awkward postures can result in higher muscle activation and muscle overloading, which can cause 

knee MSDs. Second, the participants were not real roofers, and the experiment was conducted in a 

laboratory setting. It is possible that novices and expert roofers may have different installation 

strategies  in real world roofing setting. Future studies will explore effects of knee postural muscle 

activation on shingle installation phase classification to examine if muscle activation can yield 

useful discriminative features for in-depth understanding of postural differences among the phases. 

In addition, application of deep neural network learning models will be further investigated to get 

more insights on the underlying classification mechanisms. Finally, applications of models from 

the present study will be extended to real world roofing settings, to examine the feasibility of 

automated recognition with the participation of professional roofers.  
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