• 제목/요약/키워드: kinetic system

검색결과 946건 처리시간 0.026초

가동형 차양 시스템의 구성과 에너지 효율 (Implementation and the Energy Efficiency of the Kinetic Shading System)

  • 한승훈
    • KIEAE Journal
    • /
    • 제14권5호
    • /
    • pp.67-73
    • /
    • 2014
  • This study aims at examining kinetic efficient shading systems and their implementation methods. These days, the importance of the shading devices are getting more significant due to the energy problem. Cordially, suitable shade designs are required as an important element for the exterior envelope of the building. This study employs the optimal shading design as an efficient shading method with the kinetic system that can be converted actively by the altitude of the sun. The proposed kinetic shading system works not only as a lightshelf in case the altitude of the sun is high but also as a vertical louver when the sun is getting lower in order to block the direct sunlight. This study has analyzed the thermal performance and shading coefficient of the kinetic shading system in comparison to existing fixed shading devices using the Ecotect. The results, in sum, conclude that the suggested kinetic shading system could decrease direct sunlights 26.2% more than the existing shading methods.

팽윤 Extrusion 전분을 기질로 한 불균일상 효소 반응계에서 Cyclodextrin 생성반응의 수치적 해석 (Kinetic Modiling of Cyclodextrin forming Reactionin a Heterogeneous Enzyme Reaction System using Swollen Extrusion Starch)

  • 조명진;박동찬;이용현
    • 한국미생물·생명공학회지
    • /
    • 제23권4호
    • /
    • pp.425-431
    • /
    • 1995
  • A kinetic model of the cyclodextrin formation in a heterogeneous enzyme reaction system using swollen extrusion starch as substrate was derived emphasing the structural features of extrusion starch. The degree of gelatinization, the ratio of accessible and inaccessible portion of extrusion starch, adsorption of CGTase on swollen starch, the structural transformation during reaction, and product inhibition caused by produced CDs were considered in deriving kinetic model. Various kinetic constants were also evaluated. The derived kinetic equation was numerically simulated, which result showed that the derived kinetic equations can be used to predict the experimental data reasonably well under the various experimental conditions. Kinetic model can be utilized for the optimization of enzyme reactor and the process development for CD production from swollen extrusion starch.

  • PDF

Design Parameter Structure for Architectural Elements of External Kinetic Facade

  • Ji, Seok-Hwan;Lee, Byung-Yun
    • KIEAE Journal
    • /
    • 제16권3호
    • /
    • pp.35-46
    • /
    • 2016
  • Purpose: This paper aims to analyse the composition system of architectural elements including shape, kinetic and material elements of kinetic facades and establish the design parameter system as a common conceptual and practical knowledge sharing platform with mechanical and electrical experts. Method: This research has been conducted in a three steps. At first, 120 cases of external shading devices are analyzed and their classification criteria have been established. Secondly geometric, kinetic and material elements are categorized in a common kinetic facade coordinates system considering environmental effects and operation method, and the applicability of combination of each element are tested. Lastly core design parameters for each element have been established in a common office building installation coordinate. Result: Geometry elements are categorized into seven geometric shapes and kinetic elements is categorized into basic linear and rotational motion and combinational folding and rolling motion. The combined set of parameters for three elements composes the whole design parameters for architectural elements of kinetic façade. Design parameters of shape elements are composed of shape, installation and arrangement parameters; design parameters for kinetic elements are composed of axis and range parameters; and design parameters of material elements are composed of thermal, lighting and color parameters.

생전분을 당공여체로 한 Stevioside의 당전이 반응의 동력학적 해석 (Kinetic Analysis of Transglycosylation Reaction of Stevioside Using Raw Starch as a Glycosyl Donor)

  • 박동찬;백승걸이용현
    • KSBB Journal
    • /
    • 제9권2호
    • /
    • pp.108-114
    • /
    • 1994
  • 분쇄마찰매치 함유 불균일상 효소반응계에서 생전분을 당공여체로 한 stevioside의 당전이 반응의 kinetics에 관한 연구를 수행하였다. 생전분으로부터 CD를 생서하는 과정과 생성된 CD와 stevioside가 random sequenrial bireactant ,echanism으로 반응하여 당전이 equation을 유도하였다. 또한 유도된 반응식의 각종 kinetic constants을 평가하였다. 유도된 반응식을 Runge-Kutta integration법으로 계산하였으며, 계산 결과를 실험치와 비교하여 유도식의 효용성을 검토하였다. 유도된 kinetic equations는 당공여체인 생전분의 농도, stevioside의 농도, 그리고 중간산물인 CD의 농도 변화를 비교적 정획히 표시할 수 있었으며, 고효율 당전이 효소반응기 개발에 활용될 것이다.

  • PDF

요소를 고려한 키네틱 타이포그래피 시스템의 확장 (Extension of Kinetic Typography System Considering Text Components)

  • 정승아;이다솜;임순범
    • 한국멀티미디어학회논문지
    • /
    • 제20권11호
    • /
    • pp.1828-1841
    • /
    • 2017
  • In the previous research, we proposed a Kinetic typography font engine that can easily add motion to text with function call only. However, since it is aimed at constructing movements for a sentence, there is still inconvenience in the production of various kinetic typography motions in word or letter unit. We propose Kinetic Typical Extended Motion API(Application Programming Interface) that extends Kinetic Motion API. The extended Kinetic Typographic Font Engine aims to simplify the process of making kinetic typography in words and letters, including the kinetic typographic motion library provided as a function. In addition, various applications that can apply Kinetic typography A kinetic typography authoring interface is provided for facilitating the construction of a motion library for the robot.

A Kinetic Study of Biphenyl Type Epoxy-Xylok Resin System with Different Kinds of Catalysts

  • 한승;김환근;윤호규;문탁진
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권11호
    • /
    • pp.1199-1203
    • /
    • 1997
  • The investigation of cure kinetics of biphenyl epoxy (4,4-diglycidyloxy-3,3,5,5-tetramethyl biphenyl)-xylok resin system with four different catalysts was performed by differential scanning calorimeter using an isothermal approach. All kinetic parameters of the curing reaction including the reaction order, activation energy and rate constant were calculated and reported. The results indicate that the curing reaction of the formulations using triphenylphosphine (TPP) and 1-benzyl-2-methylimidazole (1B2MI) as a catalyst proceeds through a first order kinetic mechanism, whereas that of the formulations using diazabicyloundecene (DBU) and tetraphenyl phosphonium tetraphenyl borate (TPP-TPB) proceeds by an autocatalytic kinetic mechanism. To describe the cure reaction in the latter stage, we have used the semiempirical relationship proposed by Chern and Poehlein. By combining an nth order kinetic model or an autocatalytic model with a diffusion factor, it is possible to predict the cure kinetics of each catalytic system over the whole range of conversion.

The Effect of Density Gradient on the Self-modulated Laser Wakefield Acceleration with Relativistic and Kinetic Effects

  • Yoo, Seung-Hoon;Kim, Jae-Hoon;Kim, Jong-Uk;Seo, Ju-Tae;Hahn, Sang-June
    • Journal of the Optical Society of Korea
    • /
    • 제13권1호
    • /
    • pp.42-47
    • /
    • 2009
  • The propagation of an intense laser pulse through an upward density-gradient plasma in a self-modulated laser wakefield acceleration (SM-LWFA) is investigated by using particle-in-cell (PIC) simulations. In the fully relativistic and kinetic PIC simulations, the relativistic and kinetic effects including Landau damping enhance the electron dephasing. This electron dephasing is the most important factor for limiting the energy of accelerated electrons. However, the electron dephasing, which is enhanced by relativistic and kinetic effects in the homogeneous plasma, can be forestalled through the detuning process arising from the longitudinal density gradient. Simulation results show that the detuning process can effectively maintain the coherence of the laser wake wave in the spatiotemporal wakefield pattern, hence considerable energy enhancement is achievable. The spatiotemporal profiles are analyzed for the detailed study on the relativistic and kinetic effects. In this paper, the optimum slope of the density gradient for increasing electron energy is presented for various laser intensities.

무산소-혐기-호기법에서 유기기질제거와 질산화의 동역학적 해석 (The Kinetic Analysis on Organic Substrate Removal and Nitrification in Anoxic-Anaerobic-Aerobic Process)

  • 채수권
    • 한국물환경학회지
    • /
    • 제23권5호
    • /
    • pp.689-696
    • /
    • 2007
  • Kinetic analysis was important to develope the biological nutrient removal process effectively. In this research, anoxic-anaerobic-aerobic system was operated to investigate kinetic behavior on the nutrient removal reaction. Nitrification and denitrification were important microbiological reactions of nitrogen. The kinetics of organic removal and nitrification reaction have been investigated based on a Monod-type expression involving two growth limiting substrates : TKN for nitrification and COD for organic removal reaction. The kinetic constans and yield coefficients were evaluated for both these reactions. Experiments were conducted to determine the biological kinetic coefficients and the removal efficiencies of COD and TKN at five different MLSS concentrations of 5000, 4200, 3300, 2600, and 1900 mg/L for synthetic wastewater. Mathematical equations were presented to permit complete evaluation of the this system. Kinetic behaviors for the organic removal and nitrification reaction were examined by the determined kinetic coefficient and the assumed operation condition and the predicted model formulae using kinetic approach. The conclusions derived from this experimental research were as follows : 1. Biological kinetic coefficients were Y=0.563, $k_d=0.054(day^{-1})$, $K_S=49.16(mg/L)$, $k=2.045(day^{-1})$ for the removal of COD and $Y_N=0.024$, $k_{dN}=0.0063(day^{-1})$, $K_{SN}=3.21(mg/L)$, $k_N=31.4(day^{-1})$ for the removal of TKN respectively. 2. The predicted kinetic model formulae could determine the predicted concentration of the activated sludge and nitrifier, investigate the distribution rate of input carbon and nitrogen in relation to the solid retention time (SRT).

유압실린더를 활용한 틸팅메카니즘 운동특성 평가 시스템 구축에 관한 개념설계 (A Conceptual Design for a Kinetic Performance Test System for the Tilting Mechanism Using Hydraulic Cylinder)

  • 이준호;한성호;김호연;남진욱
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1035-1040
    • /
    • 2011
  • In this paper we deal with a kinetic performance test system using hydraulic cylinder. It is possible to measure only current using the conventional electro-mechanical actuator when the bogie is in the process of the tilting. This makes impossible to measure the force acting on the tilting actuator. In order to overcome this problem a kinetic performance test system using hydraulic cylinder is proposed. The proposed system provide easy kinetic evaluation for the tilting mechanism and evaluation for the co-relation between load acting on the tilting actuator and the moving displacement(strock) of the tilting actuator.

  • PDF

비행입자의 열 에너지에 따른 NiTiZrSiSn 벌크 비정질 분말의 적층 거동 (Effect of Thermal Energy of In-Flight Particles on Impacting Behavior for NiTiZrSiSn Bulk Metallic Glass during Kinetic Spraying)

  • 윤상훈;김수기;이창희
    • Journal of Welding and Joining
    • /
    • 제25권3호
    • /
    • pp.37-44
    • /
    • 2007
  • Mechanical and thermomechanical properties of the bulk metallic glass (BMG) are so unique that the deformation behavior is largely dependent on the temperature and the strain rate. Impacting behavior of NiTiZrSiSn bulk metallic glass powder during kinetic spraying was investigated in this study. Considering the impact behavior of the BMG, the kinetic spraying system was modified and attached the powder preheating system to make the transition from the inhomogeneous deformation to the homogeneous deformation of impacting BMG particle easy BMG splat formation is considered from the viewpoint of the adiabatic shear instability. It is suggested that the impact behavior of bulk metallic glass particle is determined by the competition between fracture and deformation. The bonding of the impacting NiTiZrSiSn bulk amorphous particle was primarily caused by the temperature-dependent deformation and fracture (local liquid formation) behavior.