• 제목/요약/키워드: kinetic damping

검색결과 32건 처리시간 0.03초

Comparison of viscous and kinetic dynamic relaxation methods in form-finding of membrane structures

  • Labbafi, S. Fatemeh;Sarafrazi, S. Reza;Kang, Thomas H.K.
    • Advances in Computational Design
    • /
    • 제2권1호
    • /
    • pp.71-87
    • /
    • 2017
  • This study focuses on the efficiency and applicability of dynamic relaxation methods in form-finding of membrane structures. Membrane structures have large deformations that require complex nonlinear analysis. The first step of analysis of these structures is the form-finding process including a geometrically nonlinear analysis. Several numerical methods for form-finding have been introduced such as the dynamic relaxation, force density method, particle spring systems and the updated reference strategy. In the present study, dynamic relaxation method (DRM) is investigated. The dynamic relaxation method is an iterative process that is used for the static equilibrium analysis of geometrically nonlinear problems. Five different examples are used in this paper. To achieve the grading of the different dynamic relaxation methods in form-finding of membrane structures, a performance index is introduced. The results indicate that viscous damping methods show better performance than kinetic damping in finding the shapes of membrane structures.

동적감쇠를 고려한 탄성 현수선 케이블의 비선형 해석에 관한 연구 (A study on the non-linear analysis of the elastic catenary cable considering kinetic damping)

  • 한상을;정명채;이진섭
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.331-338
    • /
    • 2000
  • In this paper, a non-linear finite element formulation for the spatial cable-net structures is simulated and using this formulation, the characteristics of structural behaviors for the elastic catenary cable are examined In the simulating procedure for the elastic catenary cable, nodal forces and tangential stiffness matrices are derived using catenary parameters of the exact solutions by a governing differential equation of catenary cable, cable self-weights and unstressed cable length. Dynamic Relaxation Method that considers kinetic damping is used for the structure analysis and Newton Raphson Method is used to verify the accuracy of solutions. In the analysis of two dimensional cable, the results obtain from the elastic catenary elements are shown more accurate than does of truss elements and in the case of spatial cable-net structures, Dynamic Relaxation Method is more stable to be converged than Newton Raphson Method.

  • PDF

Estimation of viscous and Coulomb damping from free-vibration data by a least-squares curve-fitting analysis

  • Slemp, Wesley C.H.;Hallauer, William L. Jr.;Kapania, Rakesh K.
    • Smart Structures and Systems
    • /
    • 제4권3호
    • /
    • pp.279-290
    • /
    • 2008
  • The modeling and parameter estimation of a damped one-degree-of-freedom mass-spring system is examined. This paper presents a method for estimating the system parameters (damping coefficients and natural frequency) from measured free-vibration motion of a system that is modeled to include both subcritical viscous damping and kinetic Coulomb friction. The method applies a commercially available least-squares curve-fitting software function to fit the known solution of the equations of motion to the measured response. The method was tested through numerical simulation, and it was applied to experimental data collected from a laboratory mass-spring apparatus. The mass of this apparatus translates on linear bearings, which are the primary source of light inherent damping. Results indicate that the curve-fitting method is effective and accurate for both perfect and noisy measurements from a lightly damped mass-spring system.

The Effect of Density Gradient on the Self-modulated Laser Wakefield Acceleration with Relativistic and Kinetic Effects

  • Yoo, Seung-Hoon;Kim, Jae-Hoon;Kim, Jong-Uk;Seo, Ju-Tae;Hahn, Sang-June
    • Journal of the Optical Society of Korea
    • /
    • 제13권1호
    • /
    • pp.42-47
    • /
    • 2009
  • The propagation of an intense laser pulse through an upward density-gradient plasma in a self-modulated laser wakefield acceleration (SM-LWFA) is investigated by using particle-in-cell (PIC) simulations. In the fully relativistic and kinetic PIC simulations, the relativistic and kinetic effects including Landau damping enhance the electron dephasing. This electron dephasing is the most important factor for limiting the energy of accelerated electrons. However, the electron dephasing, which is enhanced by relativistic and kinetic effects in the homogeneous plasma, can be forestalled through the detuning process arising from the longitudinal density gradient. Simulation results show that the detuning process can effectively maintain the coherence of the laser wake wave in the spatiotemporal wakefield pattern, hence considerable energy enhancement is achievable. The spatiotemporal profiles are analyzed for the detailed study on the relativistic and kinetic effects. In this paper, the optimum slope of the density gradient for increasing electron energy is presented for various laser intensities.

유전알고리즘을 이용한 차량용 댐퍼의 최적설계에 관한 연구 (A Study on the Optimization Design of Automotive Damper Using Genetic Algorithm)

  • 이춘태
    • 동력기계공학회지
    • /
    • 제22권6호
    • /
    • pp.80-86
    • /
    • 2018
  • A damper is a hydraulic device designed to absorb or eliminate shock impulses which is acting on the sprung mass of car body. It converts the kinetic energy of the shock into another form of energy, typically heat. The main mechanism for providing damping is by shearing the hydraulic fluid as it flows through restrictions. Since the damping mechanism depends on the flow restrictions, these restrictions are very important in damper design. Damper engineers often try several combinations of valve shims, piston orifices and bleed orifices before finding the best combination for a particular setup on a car. Therefore, the ability to tune a damper properly without testing is of great interest in damper design. For this reason, many previous researches have been done on modeling and simulation of the damper. This paper explains a genetic algorithm method to find the optimal parameters for the design objective and the simulation results agree well with the targeted damping characteristics.

모형 로켓 연소실에서 배플형 분사기의 간극에 의한 음향 감쇠 효과에 관한 수치적 연구 (A Numerical Study on Acoustic Damping Induced by Gap between Baffled Injectors in a Model Rocket Combustor)

  • 손채훈;이중연
    • 한국추진공학회지
    • /
    • 제11권3호
    • /
    • pp.35-42
    • /
    • 2007
  • 로켓 엔진의 음향 불안정을 제어하기 위해 모형 연소실에 배플형 분사기가 장착된 경우의 음향 감쇠 특성을 수치해석적으로 조사하였다. 기존에 보고된 배플형 분사기의 효용성을 확인하였고 분사기간 간극이 존재할 때 음향 감쇠 효과가 증대되는 메커니즘을 규명하였다. 여러 가지 크기의 간극에 따라 음향학적 감쇠능력을 조사하였고, 본 연소실에서는 0.1 mm 정도의 간극에서 최적의 감쇠능력을 가짐을 알 수 있었다. 음향 감쇠 효과가 증대되는 메커니즘을 규명하기 위해, 분사기 사이의 간극에 따른 에너지 소산율과 와도를 계산하였고, 소산율 변화 추이와 감쇠인자 변화 추이가 유사함을 알았다. 이를 통해, 간극에 의한 에너지 소산의 종대로 음향 감쇠 효과가 증가함을 알았다.

차열관을 이용한 포신의 진동 감쇠에 대한 연구 (A study on the Vibration Damping of a gun barrel using Dynamically Tuned Shroud)

  • 고재민;김견식;김진우;정현우;황재혁;배재성
    • 항공우주시스템공학회지
    • /
    • 제4권4호
    • /
    • pp.28-36
    • /
    • 2010
  • Current tanks have been developed to increase mobility and firepower, and its maximum range and destructive power are improved. This great change causes remained vibration of a gun barrel after firing. For this reason, people are trying to control vibration of gun barrel effectively. This thesis presents a modeling method and analysis results for gun barrel by using a thermal shroud as an absorber mass. DTS(Dynamically Tuned Shroud) is a vibration damping system using a thermal shroud as an added mass for decreasing remained vibration. The model has an advantage that the gun barrel's vibration can be decreased by dissipating a kinetic energy of thermal shroud without install an additional dynamic absorber to tip of the gun barrel. For analyzing the damping performance of the DTS, We derived an equation of motion of the barrel after setting a mathematical modeling, and found out the frequency analysis and tendency according to stiffness ratio between barrel and shroud.

  • PDF

공기 스프링 댐퍼 시스템(ASDS)의 개발 (Development of Air Spring Damper System(ASDS))

  • 김동백;박흥식
    • 한국재난정보학회 논문집
    • /
    • 제17권4호
    • /
    • pp.829-838
    • /
    • 2021
  • 연구목적: 경제적, 기술적 이유로 내진설계가 되지 않은 기존의 콘크리트 구조물이나 내진설계나 면진 시공이 어려운 저층의 콘크리트 구조물이 지진력을 받을 때, 액체가 아닌 공기를 이용한 감쇠장치인 공기 스프링 댐퍼 시스템(Air Spring Damper System, ASDS)을 제안하고 한다. 연구방법: 자유진동의 운동방정식에서 감쇠력(Damping Force) 항인 $f_D=c{\dot{v}}$에 대한 연구를 수행하고자 하며, 이 장치가 댐퍼로서의 감쇠능력을 갖는 지에 대하여 실험적, 이론적으로 분석하며 현장적용에 대한 가능성 여부를 검토 한다. 연구결과: 에어 댐퍼 시스템은 제작 및 시공이 간편하고 형상, 크기, 재료 등에 제한이 적어서 댐퍼 의 개수가 증가하더라도 강재 이력형 댐퍼에 비하여 월등히 경제적이라 사료된다. 결론: 공기 스프링 댐 퍼 시스템에서는 감쇠비를향상을 위하여 공기 입출용 구멍의 직경을 줄이는 것이 필수이지만, 직경이 어느 이하의 크기로 줄어들면 공기의 압축성에 대한 고려가 필요하므로 공기 입출용 구멍의 직경과 공 기 압축성의 상관성에 대하여 추가적인 연구가 필요하다.

PIV시스템을 이용한 규칙파중 2차원 사각형 부유식 구조물 주위의 유동특성 연구 (Experimental Study on Flow Characteristics of Regular Wave Interacting with Rectangular Floating Structure Using PIV Technique)

  • 정광효;전호환
    • 한국해양공학회지
    • /
    • 제20권6호
    • /
    • pp.41-53
    • /
    • 2006
  • This experimental study investigated the flow characteristics for regular waves passing a rectangular floating structure in a two-dimensional wave tank. The particle image velocimetry (PIV) was employed to obtain the velocity field in the vicinity of the structure. The phase average was used to extract the mean flow and turbulence property from repeated instantaneous PIV velocity profiles. The mean velocity field represented the vortex generation and evolution on both sides of the structure. The turbulence properties, including the turbulence length scale and the turbulent kinetic energy budget were investigated to characterize the flow interaction between the regular wave and the structure. The results shaw the vortex generated near the structure corners, which are known as the eddy-making damping or viscous damping. However, the vortex induced by the wave is longer than the roll natural period of the structure, which presents the phenomena opposing the roll damping effect; that is, the vortex may increase the roll motion under the wave condition longer than the roll natural period.

초전도자기베어링을 이용한 플라이휠 에너지 저장장치의 진동특성에 관한 연구 (A Study on Vibration Characteristics of Flywheel Energy Storage System Using Superconducting Magnetic Bearings)

  • 김종수;이수훈
    • 한국정밀공학회지
    • /
    • 제15권2호
    • /
    • pp.170-177
    • /
    • 1998
  • The purpose of superconducting magnetic bearing flywheel energy storage system(SMB-FESS) is to store unused nighttime electricity as kinetic energy and convert it to electricity during daytime. The SMB-FESS is proposed as an efficient energy storage system because there is no mechanical problems, such as friction and wear The flywheel over SMB is rotated at a high speed, 50,000rpm. The major source of energy loss in the SMB-FESS is vibration of flywheel. Therefore, the vibration characteristics of SMB-FESS should be identified. In this study, the axial/radial stiffness and damping coefficient of SMB are measured by a vibration test. Natural frequencies and natural modes of flywheel and magnet are analyzed by a finite element method. The modal analysis of system is performed using the modal parameters of each component and the measured stiffness/damping coefficient. So, natural at frequencies and mode shapes of the joined system can be obtained. According to critical speed analysis, the system has two rigid conical modes in the low speed range. Nevertheless, the system has not been affected by the critical speed in the main operating range.

  • PDF