• Title/Summary/Keyword: kinematical analysis

Search Result 136, Processing Time 0.025 seconds

A development for a multi-joint biomechanical Rehabilitation system (생체역학적 다관절 재활운동 시스템의 개발)

  • 장재호;안정석;한창수;한정수;안재용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1180-1185
    • /
    • 2004
  • The purpose of this study is to develop a Multi-joint rehabilitation system (CMRS : C&R Lab. Multi-joint Rehabilitation System). This study presents the mechanism of rehabilitation system that enables rehabilitation of multi-joint with kinematical analysis for joints of human body. Also, the relative positioning between human subjects and the head part to rehabilitate for the mechanism is based on robotics and anatomy. This study was verified with simulations. Finally, Automation of positioning was realized. Rehabilitation exercises in passive mode were enabled with the results.

  • PDF

A Case Study on Kinematical Traits Analysis when Performing of Uchimatia(inner thigh reaping throw) by Posture and Voluntary Resistance Levels(VRL) of Uke in Judo[ I ] (유도 허벅다리걸기 기술발휘 시 받기의 자세와 저항수준에 따른 운동학적 특성 분석 사례연구[ I ])

  • Kim, Eui-Hwan;Yoon, Hyun;Kim, Sung-Sup
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.235-257
    • /
    • 2004
  • The purpose of this study was to analyze the kinematical traits variables when performing Uchimata(inner thigh reaping throw) by Voluntary Resistance Levels(VRL) and two postures of Uke in Judo. The subjects, who were one male judoka(YH) for 1992 Barcelona Olympic Games, and one male trainee Y. I. University representative member(SDK) and were filmed on two S-VHS 16 mm video cameras(60fields/sec.), that posture of Uke were Shizenhontai(straight defensive posture) and Jigohontai(straight natural posture), VRL of Uke were 0% and 100%. The kinematical variables were temporal(total time-required: TR), potures and COG variables etc., The data of this study collection were digitized by SIMI Motion Program computed the mean values and the standard deviation calculated for each variables. When performing according to each posture and VRL, from the data analysis and discussion, the conclusions were as follows : 1. Temporal variables total time-required(TR) when performing Uchimata was shown the shortest time YH than SDK by each posture and VRL. TR of each posture were shown the shorten trends or equal in DP by lower than NP, In existence and / or nonexistence of VRL was shown the shorten trends in VRL 0% than 100% of Uke. 2. Posture variables : In attacking right knee angle, YH was performing flexion($147{\rightarrow}103degree$) from Tsukuri(set-up) to Kake(execution) in regardless of postures and VRLs, SDK was performing not exchange extension and flexion in VRL 100%, and extension($120{\rightarrow}142degree$) in VRL 0%, respectively. In supporting left hee angle, YH was performing extension($119{\rightarrow}163degree$) from Tsukuri(set-up) to Kake(at(execution) in regardless of postures and VRLs, SDK extension($93{\rightarrow}139degree$), respectively. In attacking right hip angle, from Tsukuri to Kake, YH was performing extension($133{\rightarrow}169degree$), except in VRL 0%($156{\rightarrow}137degree$) NP, SDK was performing flexion($159{\rightarrow}126degree$) accept in VRL 100%($149{\rightarrow}152degree$) NP, In left hip angle, from Tsukuri to Kake, YH was performing flexion NP(70, 50degree) more than DP(27, 57degree), SDK was performing flexion DP(73, 52degree) more than NP(34, 20degree). 3. COG variables : When performing Uchimata, vertical COG variables was shown YH(:$2{\sim}8cm$), SDK(:$15{\sim}24cm$) lower than Uke's COG level position, in existence and / or nonexistence of postures and VRL, during Kake as maximum force point of throwing techniques in Judo.

An application of large displacement limit analysis to frame structures

  • Challamel, Noel
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.159-177
    • /
    • 2009
  • The aim of this paper is to give a rigorous framework for the interpretation of limit analysis results including large displacements. The presentation is oriented towards unidimensional media (beams) but two-dimensional (plates) or three-dimensional media are also concerned. A single-degree-of-freedom system is first considered: it shows the basic phenomena of large displacement limit analysis or second-order limit analysis. The results are compared to those of a continuous system and the differences between both systems are discussed. Theoretical results are obtained using the kinematical approach of limit analysis. An admissible load-displacement plane is then defined, according to the yield design theory. The methodology used is applied to frame structures. The presented results are nevertheless different from those already published in the literature, as the virtual displacement field can be distinguished from the displacement field at collapse. The simplicity of large displacement limit analysis makes it attractive for practical engineering applications. The load-displacement upper bound can be used for instance in the optimal design of steel frames in seismic areas.

The Biomechanical Analysis of Various Vertical Jumps According to Gender of High School Students (고등학생의 성별에 따른 수직점프 유형별 운동역학적 분석)

  • Lee, Haeng-Seob;Ju, Myung-Duck
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.153-164
    • /
    • 2006
  • This thesis is focused on kinematical and kinematical analysis of each types(Type #1 : use both swing of arm and reaction of knee, Type #2 : Use only swing of arm, not reaction of knee, type #3 : Neither use of swing of arm nor reaction of knee) of vertical jumps according to gender of High School Students. The subjects of this study is High School Student's male and female, 5 each, for analyzation of actions 3D image analyzing and GRF machines were used. To identify the differences of analyzed variables, an independent T-test on gender, an One-way ANOVA on types were used. Summery of the results are stated below. first of all, female students showed differences on Hip Joint angle and Joint Velocity from male students on Kimentic Variable. So training on hip joint force of flection and extension of female students is needed. Both male and female students showed relatively bigger result of arm's Angular Momentum than thigh's Angular Momentum on Type #1. This is regarded of faster Joint Velocity of Arm. Bigger result of female students of arm's contribution on Type #1 than male students can be said as Female student's weaker hip joint's angular muscle force than male student's, so the dependency of arm is heavier than male students. In Kinetic variable, GRF showed bigger result on male students than female students. So female students need to enhance joint's torque to increase GRF than male students. On vertical Impulse, high numeric data of last two reaction of tiptoe of vertical GRF and antero-posterior GRF helped increasing impulse by extending action time of force.

The Kinematical Analysis between the Skilled and the Unskilled for Air Pistol Shooting Posture (공기권총 사격 자세에 대한 우수선수와 비우수선수간의 운동학적 분석)

  • Kim, You-Mi;Kim, Kab-Sun
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.509-517
    • /
    • 2009
  • The purpose of this study was to investigate the effective posture for air pistol shooting. Participants were 3 male athletes of shooting with at least five years of experience and another group of 3 males athletes with less than three years of experience. For the purpose, the shooting motion was analysed using three dimensional image technology. Data from each event for the two groups, competent and less competent ones, were compared to see the differences from the kinematical point of view. Time of period in competent group was longer than less competent group during the shooting posture. Displacement of center of mass and pistol about medial/lateral and antero/posterior in competent group was little than less competent group from aim to shooting. And these result were effect to the velocity. Distance and time in competent group within coaching machine were smaller than less competent group. To the result, it was appear that precision of aim in competent group was higher than less competent group.

Kinematical Analysis of Handball Step Shoot according to Attack Position (공격위치에 따른 핸드볼 스텝슛의 운동학적 분석)

  • Kang, Sang-Hack
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.55-66
    • /
    • 2005
  • The present study used a video analysis system to quantify the kinematical data of step shoot motion by male university handball players. From the results of analyzing dynamic variables of step shoot motion according to shooting direction were drawn conclusions as follows. 1. The height of release was proportional to the height of players, and the height of release appeared low in left-side attacks. This is probably because the left-right-throwing angle is larger in left-side attacks than that in center attacks and right-side attacks and, as a result, the throwing arm is lowered down in throwing. 2. The leftward inclination angle of the body was larger in order of right-side attacks > center attacks > left side attacks. 3. Players' throwing form was close to three quarter style in left-side attacks. In center and right-side attacks, the arm was somewhat more upright but still it was more three quarter style than overhand style. 4. The front-rear throwing angle at the moment of release was much higher in right-side attacks than in left-side ones. This is probably because the point of time for releasing the ball is usually late in right-side attacks and, as a result, the front-rear throwing angle becomes quite large. 5. The contribution of body parts on the ball speed was higher in order of the forearm > upper arm, hand > shoulder joint. 6. In players whose distance between the two legs at the moment of release, their body usually did not incline to the side much. Thus it is considered necessary to correct the right leg in their shooting motion. 7. According to the result of analyzing throwing form, the speed of the ball at the moment of leaving the hand was faster in right-side attacks than in left-side and center attacks.

A Kinematical Characteristic Analysis of a Iron fade-shot with a Golf Swills (아이언 페이드샷의 운동학적 특성 분석)

  • Lee, Kyung-Il;Oh, Jong-Sun;Chung, Jin-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.311-322
    • /
    • 2009
  • Using the 3-D analysis, this study winpared and analyzed the 'fade-shot swing' which is one of the golf technique. The subjects of this study were 3 male pro golfers they experimented with only a 7 iron. The purpose was to enhance their performance by producing the important kinematical parameters, finding out the features in them and providing the data to a coach and players. As a result, the position of the club head showed from the outside orbit to the inside orbit. When position of the center of mass moved backwards, the probability of the failure of the fade-shot increased. Cocking angle had an effect on easing the wrist for a smooth follow-through after the impact. It showed that the changes in the shoulder movement was made first and followed by the waist. The hip joint angular velocity achieved a smooth fade-shot motion due to the hitting delay also the velocity of the club-head was faster when uncocking was released at the time of impact.

A Study on Pad Profile Variation Using Kinematical Analysis on Swing Ann Conditioner (스윙 암 컨디셔너의 기구학적 해석을 통한 CMP 패드 프로파일 변화에 관한 연구)

  • Oh, Ji-Heon;Kim, Yong-Min;Lee, Ho-Jun;Lee, Sang-Jik;Kim, Hyoung-Jae;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.47-48
    • /
    • 2007
  • A CMP Process has many factors that affect result of a polished wafer. Dominant factors are velocity, pressure and temperature in process. A pad profile is also considered as affecting factor of CMP. Accoding to variation of a pad profile, the each pan of a wafer is differently pressured. It appears to affect the uniformity of a wafer. A pad profile varies as a swing arm conditioner which have been ordinarily used in industry. A swing arm conditioner has several sectors in its swing path. This study aims that a wafer get a good uniformity as swing arm conditioner's path on pad is analyzed and simulated. Through the simulation, tendency of pad profile after conditioning will be predicted and the result of simulation compared with the result of experiment. The optimized pad profile would be made by to vary swing arm's velocity on each sector. In order to maintain the optimized profile, conditioner design or swing arm's velocity should be changed and designed.

  • PDF

ALE-Based FSI Simulation of Solid Propellant Rocket Interior (ALE 기반의 고체 로켓 내부 유체-구조 연계 해석)

  • Han, Sang-Ho;Choi, H.S.;Min, D.H.;Kim, C.;Hwang, Chan-Gyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.510-513
    • /
    • 2008
  • The traditional computational fluid or structure dynamics analysis approaches have contributed to solve many delicate engineering problems. But for the most of recent engineering problems which are influenced by fluid-structure interaction effect strongly, traditional individual approaches have limited analysis abilities for the exact simulation. Owing to above-mentioned reason, nowadays fluid-structure interaction analysis has become a matter of concern and interest. FSI analysis require several unprecedented techniques for the combining individual analysis tool into integrated analysis tool. The Arbitrary Lagrangian-Eulerian(ALE, in short) method is the new description of continum motion,which combines the advantages of the classical kinematical descriptions, i.e. Lagrangian and Eulerian description, while minimizing their respective drawbacks. In this paper, the ALE description is adapted to simulate fluid-structure interaction problems. An automatic re-mesh algorithm and a fluid-structure coupling process are included to analyze the interaction and moving motion during the 2-D axisymmetric solid rocket interior FSI phenomena simulation.

  • PDF

Three dimensional seismic and static stability of rock slopes

  • Yang, X.L.;Pan, Q.J.
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.97-111
    • /
    • 2015
  • The kinematical approach of limit analysis is used to estimate the three dimensional stability analysis of rock slopes with nonlinear Hoek-Brown criterion under earthquake forces. The generalized tangential technique is introduced, which makes limit analysis apply to rock slope problem possible. This technique formulates the three dimensional stability problem as a classical nonlinear programming problem. A nonlinear programming algorithm is coded to search for the least upper bound solution. To prove the validity of the present approach, static stability factors are compared with the previous solutions, using a linear failure criterion. Three dimensional seismic and static stability factors are calculated for rock slopes. Numerical results of indicate that the factors increase with the ratio of slope width and height, and are presented for practical use in rock engineering.