• Title/Summary/Keyword: kinematic modeling

Search Result 225, Processing Time 0.028 seconds

Three Dimensional Modeling and Simulation of a Wheel Loader (휠로더의 3 차원 모델링 및 시뮬레이션)

  • Park, Jun-Yong;Yoo, Wan-Suk;Kim, Heui-Won;Hong, Je-Min;Ko, Kyoung-Eun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.870-874
    • /
    • 2004
  • This paper presents a three dimensional modeling and simulations of operation and running of a wheel loader using the ADAMS program. A wheel loader consists of a bucket, a boom, a crank, a front frame, a rear frame, a bucket cylinder, two boom cylinders, two steering cylinders, nine spherical joints, six universal joints, five translation joints, three inline joints, a revolute and a fixed joint. Judging from the actual degrees of freedom of the wheel loader, proper kinematic joints are selected to exclude redundant constraints in the modeling. Through the running simulation over a bump with the three dimensional modeling, the joint reaction forces are calculated.

  • PDF

A Study of Efficient Method of 3D JIG Kinematic Modeling for Automobile Process Simulation (자동차 공정 시뮬레이션의 3D 지그 키네마틱 정보 모델링을 위한 효율적 방법 연구)

  • Ko, Min-Suk;Kwak, Jong-Geun;Jo, Hee-Won;Park, Chang-Mok;Wang, Gi-Nam;Park, Sang-Cheul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.6
    • /
    • pp.415-423
    • /
    • 2009
  • Because of the fast changing car design and increasing facilities, manufacturing process of cars is getting more complex now a days. Particularly, car manufacturing system that consist of automated devices, applies various simulation techniques to validate device motion and detect collision. To cope with this problem, traditional manufacturing system deployed test-run with the real devices. However, increased computing power in a contemporary manufacturing system changes it into realistic 3D simulation environment. Similarly, managed device data that was generated using 2D traditionally, can be converted to 3D realistic simulation. The existing problem with 3D simulation is disjoint data interaction between different work stations. Consequently, JIGs, fixing the car part accurately, are changed according to fixing position on the part or a part shape properties. In practice, the 3D JIG data has to be managed according to kinematic information, but not of its features. However, generating kinematic information to the 3D model repeatedly according to frequent change in part is not explained in current literatures. To fill this knowledge gap, this paper suggests an improving method of rendering 3D JIG kinematics information to simulation model. Thereafter, it shows the result of implementation.

A study on the control-in-the-small characteristics of a planar parallel mechanism (평면형 병렬 메카니즘의 국소적 제어 특성에 관한 연구)

  • Kim, Whee-kuk;Cho, Whang;Kim, Jae-Seoub
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.360-371
    • /
    • 1998
  • In this paper, output precision characteristics of a planar 6 degree-of-freedom parallel mechanisms are investigated, where the 6 degree-of-freedom mechanism is formed by adding an additional link along with an actuated joint in each serial subchain of the planar 3 degree-of-freedom parallel mechanism. Kinematic analysis for the parallel mechanism is performed, and its first-order kinematic characteristics are examined via kinematic isotropic index, maximum and minimum input-output velocity transmission ratios of the mechanisms. Based on this analysis, two types of planar 6 degrees-of-freedom parallel manipulators are selected. Then, dynamic characteristics of the two selected planar 6 degree-of-freedom parallel mechanisms, via Frobenius norms of inertia matrix and power modeling array, are investigated to compare the magnitudes of required control efforts of both three large actuators and three small actuators when the link lengths of three additional links are changed. It can be concluded from the analysis results that each of these two planar 6 degrees-of-freedom parallel mechanisms has an excellent control-in-the-small characteristics and therefore, it can be very effectively employed as a high-precision macro-micro manipulator when both its link lengths and locations of small and large actuators are properly chosen.

  • PDF

Exploring geometric and kinematic correspondences between gear-based crank mechanism and standard reciprocating crankshaft engines: An analytical study

  • Amir Sakhraoui;Fayza Ayari;Maroua Saggar;Rachid Nasri
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.97-106
    • /
    • 2024
  • This paper presents a significant contribution to aided design by conducting an analytical examination of geometric links with the aim of establishing criteria for assessing an analogy measure of the extrinsic geometric and kinematic characteristics of the Variable Compression Ratio (VCR) engine with a Geared Mechanism (GBCM) in comparison to the existing Fixed Compression Ratio (FCR) engine with a Standard-Reciprocating Crankshaft configuration. Employing a mechanical approach grounded in projective computational methods, a parametric study has been conducted to analyze the kinematic behavior and geometric transformations of the moving links. The findings indicate that in order to ensure equivalent extrinsic behavior and maintain consistent input-output performance between both engine types, precise adjustments of intrinsic geometric parameters are necessary. Specifically, for a VCR configuration compared to an FCR configuration, regardless of compression ratio and gearwheel radius, for the same crankshaft ratios and stroke lengths, it is imperative to halve lengths of connecting rods, and crank radius. These insights underscore the importance of meticulous parameter adjustment in achieving comparable performance across different engine configurations, offering valuable implications for design optimization.

An Efficient Dynamic Modeling Method for Hybrid Robotic Systems

  • Chung, Goo-Bong;Yi, Byung-Ju
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2719-2724
    • /
    • 2003
  • In this paper, we deal with the kinematic and dynamic modeling of hybrid robotic systems that are constructed by combination of parallel and serial modules or series of parallel modules. Previously, open-tree structure has been employed for dynamic modeling of hybrid robotic systems. Though this method is generally used, however, it requires expensive computation as the size of the system increases. Therefore, we propose an efficient dynamic modeling methodology for hybrid robotic systems. Initially, the dynamic model for the proximal module is obtained with respect to the independent joint coordinates. Then, in order to represent the operational dynamics of the proximal module, we model virtual joints attached at the top platform of the proximal module. The dynamic motion of the next module exerts dynamic forces to the virtual joints, which in fact is equivalent to the reaction forces exerted on the platform of the lower module by the dynamics of the upper module. Then, the dynamic forces at the virtual joints are distributed to the independent joints of the proximal module. For multiple modules, this scheme can be constructed as a recursive dynamic formulation, which results in reduction of the complexness of the open-tree structure method for modeling of hybrid robotic systems. Simulation for inverse dynamics is performed to validate the proposed modeling algorithm.

  • PDF

Landing Motion Analysis of Human-Body Model Considering Impact and ZMP Condition (충격과 ZMP 조건을 고려한 인체 모델의 착지 동작 해석)

  • So Byung Rok;Kim Wheekuk;Yi Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.543-549
    • /
    • 2005
  • This paper deals with modeling and analysis fer the landing motion of a human-body model. First, the dynamic model of a floating human body is derived. The external impulse exerted on the ground as well as the internal impulse experienced at the joints of the human body model is analyzed. Second, a motion planning algorithm exploiting the kinematic redundancy is suggested to ensure stability in terms of ZMP stability condition during a series of landing phases. Four phases of landing motion are investigated. In simulation, the external and internal impulses experienced at the human joints and the ZMP history resulting from the motion planning are analyzed for two different configurations. h desired landing posture is suggested by comparison of the simulation results.

Development of Collision Detection Method Using Estimation of Cartesian Space Acceleration Disturbance (직교좌표계 가속도 외란 추정을 통한 충돌 감지 알고리즘 개발)

  • Jung, Byung-jin;Moon, Hyungpil
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.258-262
    • /
    • 2017
  • In this paper, we propose a new collision detection algorithm for human-robot collaboration. We use an IMU sensor located at the tip of the manipulator and the kinematic behavior of the manipulator to detect the unexpected collision between the robotic manipulator and environment. Unlike other method, the developed algorithm uses only the kinematic relationship between the manipulator joint and the end effector. Therefore, the collision estimation signal is not affected by the error of the dynamics model. The proposed collision detection algorithm detects the collision by comparing the estimated acceleration of the end effector derived from the position, velocity and acceleration trajectories of the robot joints with the actual acceleration measured by the sensor. In simulation, we compare the performance of our method with the conventional Residual Observer (ROB). Our method is less sensitive to the load variation because of the independency on the dynamic modeling of the manipulator.

Error Identification and Compensation for NC Machine Tools Using the Reference Artifact (기준물을 이용한 NC 공작기계의 오차규명 및 보상제어)

  • 정성종
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.102-111
    • /
    • 2000
  • Methodology of volumetric error identification and compensation is presented to improve the accuracy of NC machine tools by using a reference artifact and a touch trigger probe. Homogeneous transformation matrix and kinematic chain are used for modeling the geo-metric and thermal errors of a three-axis vertical machining center. The reference artifact is designed and fabricated to identify the model parameters by machine tool metrology. Parameters in the error model are able to be identified and updated by direct measurement of the reference artifact on the machine tool under the actual conditions which include the thermal interactions of error sources. A volumetric error compensation system based on IBM/PC is linked with a FANUC CNC controller to compensate for the identified volumetric error in machining workspace.

  • PDF

Kinematic Modeling and Analysis of Omni-Directional Mobile Robots with Redundant Actuation (여유구동을 지니는 전방향 모바일 로봇의 기구학 모델링 및 해석)

  • Yi, Byung-Ju;Kim, Wheekuk;Yang, Seong-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.9
    • /
    • pp.766-773
    • /
    • 2001
  • Omni-directional mobile robots have been popularly employed in several application areas. However, the kinematics for these systems have not been clearly identified, specially for redundantly actuated case which is common in omni-directional mobile robot such as the Nomadic model. For such mobile robot systems, exploitation of redundant actuation as well as singularity analysis has not been extensively addressed. In light of this fact, this paper introduces two different kinematic approaches for omni-directional mobile robots. Then, a singular-free load distribution scheme for redundantly actuated three-wheeled omni-directional mobile robot is proposed. Through simulation, several advantages of redundantly actuated mobile robot in aspect of singularity avoidance, minimization of torque norm, and exploiting several subtasks are presented.

  • PDF

Deployment Dynamics of Large-Scale Flexible Solar Arrays with Deployable Mast

  • LI, Hai-Quan;LIU, Xiao-Feng;GUO, Shao-Jing;CAI, Guo-Ping
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.245-254
    • /
    • 2017
  • In this paper, deployment dynamics of large-scale flexible solar arrays with deployable mast is investigated. The adopted solar array system is introduced firstly, then kinematic description and kinematic constraint equations are deduced, and finally, dynamics equation of the system is established by the Jourdain velocity variation principle and a new method to deal with topology changes of the deployable mast is introduced. The dynamic behavior of the system is studied in detail. Simulation results indicate that the proposed model is effective to describe the deployment dynamics of the solar arrays and that the introduced method is applicable for topology changes.