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Abstract

In this paper, deployment dynamics of large-scale flexible solar arrays with deployable mast is investigated. The adopted 

solar array system is introduced firstly, then kinematic description and kinematic constraint equations are deduced, and 

finally, dynamics equation of the system is established by the Jourdain velocity variation principle and a new method to 

deal with topology changes of the deployable mast is introduced. The dynamic behavior of the system is studied in detail. 

Simulation results indicate that the proposed model is effective to describe the deployment dynamics of the solar arrays and 

that the introduced method is applicable for topology changes.
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1. Introduction

Solar array system is one of the essential components of 

spacecraft. It provides power for the spacecraft in on-orbit 

flight. As more advanced missions are posed to spacecrafts 

and as higher performances are required of mission 

instruments, more electric power is required for spacecrafts 

to generate. Despite a trend toward greater diversity in the 

spacecraft class, an upper limit of electric power demand 

has increased steadily. To accommodate this requirement, 

larger solar array paddles have been developed [1,2] With the 

advent of large and light-weight solar arrays in spacecrafts, 

the flexibility of these arrays has become a concern since 

undesirable vibrations of these components could disrupt the 

mission of the spacecraft [3].

Deployable masts are frequently used in various space 

programs as basic structural members [4-7], and they are 

classified into two categories due to the ways of stowage [6]. 

One is a coilable longeron extendible mast, which is stowed 

through the coilable deformation of continuous elastic 

longerons, and another is an articulated one. Generally 

speaking, the latter shows stiffer mechanical properties for 

heavy duties, but it consists of a larger number of mechanism 

parts, which sometimes decrease deployment reliability. In 

the design and numerical simulation of articulated extendible 

mast systems for present and future space applications, 

reliability of deployment mechanisms and applicable 

dynamic modelling methods are strongly requested.

In recent years, the researches of solar arrays and 

deployable mast have attracted more and more attention, 

and considerable theoretical researches and engineering 

experiments have been done. For example, Loh [8] built 

a finite element model of prestressed solar arrays in 

structural dynamics and analyzed the effects of geometric 

stiffness on natural frequencies. Iwata, Fujii et al. [9] 

described a design optimization for a large solar array 

paddle deployment with various practical constraints and 

presented ground verification results. Yang [4] established 

a dynamic model of coilable mast and rigid solar arrays 

based on the multibody dynamic solver Thudynamics 

and revealed the parameter sensitivity that influences the 

reliability of coilable mast deployment. Laible, Fitzpatrick 

et al. [10] performed a detailed nonlinear analysis on 

the 2A array model to assess possible solutions to modal 

differences, and their study revealed that the array 

attachment structure is nonlinear and thus was the source 
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of error in the model prediction of mast modes. Shan et 

al. [5] designed a triangular prism modular deployable 

mast and analyzed kinematics behavior of the mast. From 

the researches above it can be seen that solar arrays and 

deployable mast have gained many attentions and many 

research results have been achieved. However, most of 

the researches focused on the deployed state of the solar 

arrays and researches about the deployable mast just 

studied the kinematics of the deployment and the force 

analysis of the mast on the deployed state; little attention 

has been paid to the deployment process of the mast with 

flexible solar arrays. Even in the very small amount of 

studies about deployment dynamics of solar arrays, the 

flexibility of sub-panels was not considered [4,9].

The solar arrays are deployed by the combined effects of the 

deployable mast, guy-wire and tension control mechanism. 

The deployment will affect the position and attitude of the 

spacecraft. Therefore, it is necessary to establish a dynamic 

model to analyse the deployment dynamics of the solar array 

system.

In this paper, deployment dynamics of large-scale 

flexible solar arrays is investigated. Dynamics modeling for 

the system is given and numerical simulations are done to 

reveal the system characteristics. This paper is organized as 

follows. Section 2 introduces the structure of the solar array 

system, including spacecraft main-body, deployable mast, 

latch mechanisms, drive mechanism, solar arrays, tension 

control mechanism, guy-wire and joint damper between 

sub-panels. In Section 3, dynamic equation of the solar 

array system is established by the Jourdain velocity variation 

principle and a method for dynamics with topology changes 

is introduced. Section 4 presents numerical simulations 

to validate the theoretical studies in this paper. Finally, a 

concluding remark is given in Section 5.

2. Solar array system with deployable mast

In this section, the structure of the solar array system 

adopted in this paper is firstly introduced (Fig. 1), then the 

latch mechanism and the limit spring of the deployable mast 

are studied, and finally the tension control mechanism, the 

guy-wires and the joint damper are discussed.

2.1 Deployable Mast

Deployable mast emerged with the development of 

aerospace exploring technology [6]. It is mainly used for 

extending flexible solar array and supporting deployable 

antenna, synthetic aperture radar and space telescope. 

Tubular boom, telescopic mast, coilable mast and some 

articulated masts have been developed and applied in outer 

space. In this paper, a triangular prism modular mast [5,11] 

as shown in Fig. 2 is adopted.

Figure 2 shows the triangular prism modular deployable 

mast. Three screws are installed outside each node of 

triangular frames. Each frame can be held in turn by the screw 

driving the rollers on three corners of the frame. The rollers 

contain one rotational degree of freedom which is beneficial 

for decreasing frictions between screws and rollers. There 

are limiting springs [11] (Fig. 3) so that the latter unit will not 

be held until the former unit is fully deployed. This sequence 
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repeats until the whole mast is deployed.

2.2 Solar Arrays

As shown in Fig. 1. The solar arrays consist of rigid and 

flexible sub-panels, two containers, four guy-wires and the 

tension control mechanism. The lower container is fixed 

on the spacecraft mainbody. The deployable mast drives 

the upper container, and the upper container pulls the 

sub-panels by ropes of the tension control mechanism to 

complete the deployment.

The tension control mechanism (TCM) is designed to 

provide tensional force to the sub-panels. The purpose of 

this force is to keep the sub-panel stiff [12]. In this paper, the 

tension control mechanism is simplified as a spring and a 

damper when the rope is stretched (Fig. 4), and there is no 

tensional force when the rope is not stretched. The tensional 

force can be written as
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where ktcm is the stiffness, ctcm is the damping coefficient, δvtcm 

is the relative velocity between the container and the blank 

rigid sub-panel and δvtcm is the stretched length of the rope.

As shown in Figs. 1, there are four guy-wires to keep the 

sub-panels from large deviation or reverse folding state [4]. 

When the sub-panels are deployed with normal state, there 

is no force acting on the sub-panels by the guy-wire (Fig. 5 

(a)); when large deviation (Fig. 5 (b)) or reverse folding state 

(Fig.5 (c)) occur, tension of the guy-wire acts on the sub-

panels to pull them back to the normal state.

The sub-panels are connected by revolution joints with 

damping, when the deployment is completed, the joint 

will reach its final position with some momentum that will 

result in overshoot and oscillation. The extinguishing of that 

oscillation is the purpose of a damper [13]. The damping 

torque can be calculated as
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of mode function and s mean that that the first s models are 

chosen.

As shown in Fig. 6, for an arbitrary flexible body Bi in the 

system, we select a body reference ei whose location and 

orientation with respect to the global coordinate system 

e0 are defined by a set of coordinates called reference 

coordinates and denoted as qri, the vector qri can be written 

in a partitioned form as
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where “˙” denotes differentiation with respect to time.  Since K
iρ  is the position of the point K in 

the deformed state that can be written as T
321 ][ K
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K
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K
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K
i ρ , throughout the text the symbol 

“~” denotes a skew symmetric matrix, K
iρ~  in Eq. (9) is defined as [15] 
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Equations (7) and (10) will be used in the next section to 

build the augmented dynamics equation of the system.

3.3 Dynamics equation

Here we establish the dynamics equation of an arbitrary 

body Bi based on the Jourdain velocity variation principle 
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and assemble the dynamics equation of the system by the 

augmented method.

The lumped mass finite element method is used to divide 

the body Bi into le elements, and the mass of the body Bi is 

lumped to l nodes. According to the variation principle, the 

speed variation form of dynamic equation of the body Bi can 

be written as [16]
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The matrix qC  in Eq. (21) is the constraint Jacobian matrix, T
21 ][ nc λ  is the vector 

of Lagrange multipliers, Λλ  is the Lagrange multiplier vector of the constraint equation (9) and ΛC  

is the constraint Jacobian matrix of the four Euler parameters. 

Then the dynamics equation of the system can be written as [14] 
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Equation (23) is dynamics equation of the system that can be solved for the acceleration vector q   and the vector 

of Lagrange multipliers. Given a set of initial conditions, the 

acceleration vector can be integrated to obtain the velocities 

and the generalized coordinates [16].

3.4 A Methodology for Topology Changes

The deployable mast is a common variable topology 

mechanism. Each deployable unit has three latch 

mechanisms. The latch mechanisms will cause changes of the 

degrees of freedom of the studied system, and calculations of 

many contacts will be introduced into the simulation.

A traditional method employs contact/impact 

mechanics in that the local contact/impact areas are 

modeled as spring-damping systems [17-19]. This method 

is suitable for understanding the effects of topology 

change events on the whole system. However, the time 

step must be limited to a small enough magnitude for 

the introduction of oscillation equations with a large 

stiffness term. The small time steps substantially increase 

the computational task, which makes it very difficult to 

simulate the deployment of the solar array system with 

many latch mechanisms.

Another class of methods is suitable for large temporal 

and super real-time simulations because the topology 

changes are modeled as instantaneous events that 

have relatively larger step sizes, which can be used for 

integration [20-25]. This method is suitable for the solar 

array system because the topology changes are modeled as 

instantaneous events that have relatively larger step size for 

integration.

In the second method, the topological changes, such as 

the locking or releasing of specific degrees of freedom and 

the formation or breaking of kinematic loops, are called 

“events” [25]. Let t - and t + represent the beginning and 

ending moments of the adjustment; the duration of the 

progress can be expressed as 
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where )(qM  stands for the mass matrix, )(qCafter  is the Jacobian of the constraint equations after 

the occurrence of an event and μ  represents the impulsive constraint forces.  Equation (25) can be 

solved for the change in the generalized velocities, and then the generalized velocities after an event 

can be calculated. 

 

4  Numerical Simulation 

In this section, the validity of the dynamic model proposed in this paper is verified firstly, and then 

simulations are conducted to analyze the dynamic behavior of the deployment.  The solar array 

system is shown in Fig. 1, where 18 deployable units and 24 sub-panels are taken into account.  The 

stiffness and damping of the tension control mechanism are chosen to be 200 N/m and 2N·s/m, 

respectively. The guide force of each guy-wire is chosen to be 10N, and the drive force is chosen to be 

2000×(0.04 - Tv ), where Tv  is the velocity of the triangular frame of the deploying unit.  Physical 

parameters of the system are given in Tables 1 - 3. 

 

Table 1  Parameters of the solar arrays 

Item Width Thickness Length Mass Inertia

Jxx 

Inertia

Jyy 

Inertia 

Jzz 

Elasticity 

modulus 

Unit m m m kg kgm2 kgm2 kgm2 GPa 
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Table 2  Parameters of the triangular frame 

Item Length of side Mass Inertia
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Equation (23) is dynamics equation of the system that can be solved for the acceleration vector q  
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Jacobian of the constraint equations after the occurrence of 

an event and μ represents the impulsive constraint forces. 

Equation (25) can be solved for the change in the generalized 

velocities, and then the generalized velocities after an event 

can be calculated.

4. Numerical Simulation

In this section, the validity of the dynamic model 

proposed in this paper is verified firstly, and then 

simulations are conducted to analyze the dynamic behavior 

of the deployment. The solar array system is shown in Fig. 

1, where 18 deployable units and 24 sub-panels are taken 

into account. The stiffness and damping of the tension 

control mechanism are chosen to be 200 N/m and 2N•s/m, 

respectively. The guide force of each guy-wire is chosen 

to be 10N, and the drive force is chosen to be 2000×(0.04 

- vT), where vT is the velocity of the triangular frame of the 

deploying unit. Physical parameters of the system are given 

in Tables 1 - 3.

4.1 Verification of Dynamic Model

The validity of the dynamics modeling method proposed 

in this paper is verified through the comparison with ADAMS 

software. To simplify the simulation for comparison, a simple 

deployment model with eight sub-panels and six deployable 

units is considered, as shown in Fig. 7.

In this simulation, the local contact/impact areas are 

modeled as spring-damping systems. The lock torque is 

given by

13 

Unit m kg kgm2 kgm2 kgm2 

Value 0.3 0.19 1.29e-3 1.29e-3 2.57e-3 

 

Table 3  Parameters of the deployable mast longeron 

Item Length Mass Inertia

Jxx 

Inertia

Jyy 

Inertia

Jzz 

Unit m kg kgm2 kgm2 kgm2

Value 0.162 9.84e-2 2e-4 4.89e-6 2e-4 
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where iθ  is the differential of iθ , e is an exponent, bsk  is the equivalent stiffness, c is the damping

 coefficient and d is the distance depth. 

The simulation results are presented in Figs. 8 and 9.  These results show the displacements of the 

two panels during the deployment, where the solid line is the result using the proposed model and the 

dotted line using the ADAMS software.  We can observe from Figs. 8 and 9 that the proposed 

model could achieve the same results as ADAMS software, which proves the validity of the proposed 

model. 
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In this method, the following linear algebraic equations are obtained [20]: 
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where iθ  is the differential of iθ , e is an exponent, bsk  is the equivalent stiffness, c is the damping

 coefficient and d is the distance depth. 

The simulation results are presented in Figs. 8 and 9.  These results show the displacements of the 

two panels during the deployment, where the solid line is the result using the proposed model and the 

dotted line using the ADAMS software.  We can observe from Figs. 8 and 9 that the proposed 

model could achieve the same results as ADAMS software, which proves the validity of the proposed 

model. 
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will become very slow and divergence may occur. In 

this simulation, we compare the first 20 seconds of the 

deployment and the results are given in Fig. 10, where the 

dotted line is the result with the traditional method (Method 

1) and the solid one is the result with the introduced method 

(Method 2).

It is observed from Fig. 10 that the simulation result with 

the new method introduced in this paper (Method 2) is 

similar to that of the simulation with the traditional method. 

This comparison also verified the conclusion of Guo and 

Wang [20]. So we can conclude that the introduced method 

could be used to describe complex dynamics problems with 

topology changes and that the calculation of a large number 

of spring-damping forces is avoided. So this method is more 

applicable for simulations of a long period of time than the 

spring-damping method.
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of the full-length solar array system shown in Fig. 1 is 

conducted. The parameters are given in Table 1. The 24 sub-
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the deployable mast. After the deployment of the sub-panels 

is finished, the deployable mast continues to drive the upper 

container to stretch the tension control mechanism. We 
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and the simulation results are given in Figs. 11 – 13.
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The angular displacement and angular velocity of the deployable units are given in Fig. 12.  In 

order to analyze conveniently, the results of unit 8 and unit 9 are plotted in Fig. 13.  From Fig. 13 we 

can see that the deployable units are deployed in proper order.  Further more, discontinuous jumps of 

the angular velocity can be observed from Figs. 12b and 13b. 
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indicate that the proposed model is effective in describing the deployment dynamics of the large-scale 

flexible solar array system and that the introduced method is applicable for topology changes.  The 

sudden transition in structural topology of the system could be simulated accurately and efficiently 

through the dynamics equation.  The jumps in the generalized velocities when the topology changes 

occurred are calculated reasonably and precisely by the method introduced in this paper.  The 
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Figure 11 shows the displacement of the sub-panels in the 

direction along the mast. From Fig. 11 we can see that the 

sub-panels are deployed smoothly and that the symmetrical 

sub-panels in the system have the same behavior during the 

deployment.

The angular displacement and angular velocity of the 

deployable units are given in Fig. 12. In order to analyze 

conveniently, the results of unit 8 and unit 9 are plotted in 

Fig. 13. From Fig. 13 we can see that the deployable units are 

deployed in proper order. Further more, discontinuous jumps 

of the angular velocity can be observed from Figs. 12b and 13b.

5. Conclusion

In this paper, deployment dynamics of a large-scale 

flexible solar array system with deployable mast is 

investigated. Dynamics equation of the solar array system is 

established by the Jourdain velocity variation principle and a 

new method is introduced for topology changes. Simulation 

results indicate that the proposed model is effective in 

describing the deployment dynamics of the large-scale 

flexible solar array system and that the introduced method 

is applicable for topology changes. The sudden transition 

in structural topology of the system could be simulated 

accurately and efficiently through the dynamics equation. 

The jumps in the generalized velocities when the topology 

changes occurred are calculated reasonably and precisely by 

the method introduced in this paper. The method captures 

the topology change explicitly by active and inactive aspects 

of the different constraint equation sets. Additionally, 

discontinuous jumps are calculated with the equations 

deduced from the integration of dynamics equation and 

velocity-level constraint violation equations.
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