• Title/Summary/Keyword: kinds of aggregate

Search Result 107, Processing Time 0.023 seconds

Engineering Characteristics of Ultra High Strength Concrete with 100 MPa depending on Fine Aggregate Kinds and Mixing Methods (잔골재 종류 및 혼합방법 변화에 따른 100 MPa 급 초고강도 콘크리트의 공학적 특성)

  • Han, Min-Cheol;Lee, Hong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.536-544
    • /
    • 2016
  • Recently, with the increase in the number of high rise and huge scaled buildings, ultra-high strength concrete with 80~100 MPa has been used increasingly to withstand excessive loads. Among the components of concrete, the effects of the kinds and properties of fine aggregates on the performance and economic advantages of ultra-high strength concrete need to be evaluated carefully. Therefore, this study examined the effects of the type of fine aggregates and mixing methods on the engineering properties of ultra-high strength concrete by varying the fine aggregates including limestone fine aggregate (LFA), electrical arc slag fine aggregate (EFA), washed sea sand (SFA), and granite fine aggregate (GFA) and their mixtures. Ultra-high strength concrete was fabricated with a 20 % water to binder ratio (W/B) and incorporated with 70 % of Ordinary Portland cement: 20 % of fly ash:10 % silica fume. The test results indicate that for a given superplasticizer dose, the use of LFA resulted in increases in slump flow and L-flow compared to the mixtures using other aggregates due to the improved particle shape and grading of LFA. In addition, the use of LFA and EFA led to enhanced compressive strength and a decrease in autogenous shrinkage due to the improved elastic properties of LFA and the presence of free-CaO in EFA, which resulted in the formation of C-S-H.

An Experimental Study on the Properties of Engineering and Shrinkage Cracking Reduction of Fiber Reinforced Concrete Using Recycled Fine Aggregate (섬유보강 순환잔골재 콘크리트의 공학적 특성 및 수축균열저감특성에 관한 실험적 연구)

  • Kim, Gyu-Yong;Nam, Jeong-Soo;Kim, Moo-Han;Lee, Do-Heun;Song, Ha-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.82-89
    • /
    • 2009
  • Recently, the study is progressing actively about manufacture skill of concrete for promoted recycled aggregate and concrete made into recycled aggregate in the construction production field. But, application and study about recycled fine aggregate insufficient compared to recycled coarse aggregate. So, in this study, it presents basic data for development of environmental load reduction fiber reinforcement recycled fine aggregate concrete by comparison and investigation about engineering properties and shrinkage cracking of fiber reinforcement recycled find aggregate concrete for increasing shrinkage cracking reduction and long term stability of environmental load reduction concrete used recycled fine aggregate. In the result of the study, compared to natural fine aggregate, a crack-extent increased by applying recycled fine aggregate, moreover, as a water cement ratio increased, the crack size increased, as well. In addition, it's shown that the specimen mixed with PVA and Nylon, among all kinds of fibers, showed the smallest crack size, so it's verified that the mix of fiber had an effect on decreasing crack-extent.

  • PDF

A Fundamental Study of Ferro Copper Slag for Concrete Aggregate (동슬래그의 콘크리트용 골재 활용에 관한 기본연구)

  • Song, Tae-Hyeob;Lee, Mun-Hwan;Lee, Sea-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.35-42
    • /
    • 2003
  • To use ferro copper slag as aggregate in the construction, an evaluation upon the two kinds of ferro copper slag being produced was conducted to determine the basic physical, and mechanical properties, chemical component and environmental noxiousness. As a result of experiment, it was found that two kinds of ferro copper slag satisfies the physical and mechanical properties of aggregate, prescribed in KS F 2526, and that in the result of noxious heavy metal eruption test by single bach extraction, no eruption of noxious heavy metal was detected or the eruption was far below the reference value. And mortar test was conducted by replacing sand of 25, 50, 75, 100% and the performance level was presented upon reviewing the fluidity property and variable aspects of unit weight. The increase of strength in accordance with replacement rate of sand was found to be the below than the equivalent level compared to the testing specimens that did not use ferro copper slag, but those of 25% replacement rate was above than 0%. Thus, two kinds of ferro copper slag, produced in the domestic, were found to be possessing the enough physical properties to use as concrete aggregate assuming that used with sand and in particular, it was reviewed to be advantageous in manufacturing concrete or mortar that requires weight.

Effect of Carotenoides on the in vitro Aggregation of Bacteriochlorophyll e

  • Hirabayashi, Hiroki;Ohmura, Satoshi;Ishii, Takasada;Uehara, Kaku
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.370-372
    • /
    • 2002
  • In order to investigate effect of the carotenoids (Car) on aggregation of Bacterochlorophyll (BChl) in chlorosome, we studied the spectral difference in aggregates of BChl e formed in the absence and presence of a few kinds of Car in dimethyl sulfoxide (DMSO) -water solution. The absorption spectra of aggregates made of only BChl e and those made of a mixture of BChl e and Car were almost the same. However, the kinetics and circular dichroism (CD) spectra of aggregate of these were markedly different by kind of Car. Specifically, the rate of aggregation for a mixture of BChl e and isorenietene that contains phenyl as end groupe was faster than that for only BChl e. CD spectra of aggregates made of a mixture of BChl e and isorenietene dramatically changed compared to that made of only BChl e. We propose that BChl might form several kinds of rod-like supramolecular structures to in the presence of some kind of Car in chlorosome.

  • PDF

Water absorption characteristics of artificial lightweight aggregates preparedby pre-wetting (프리웨팅된 인공경량골재의 흡수 특성)

  • Kim, Yoo-Taek;Jang, Chang-Sub;Ryu, Yug-Wang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.2
    • /
    • pp.82-86
    • /
    • 2011
  • Lightweight aggregate which is composed of sintered polycrystalline materials usually has a certain portion of pores inside of it. Because of such a structural characteristics, it tends to that movement of water in aggregate shows an abnormal behavior against the change of outside environment. In general, water movement behavior is controlled by porosity, distribution of pore size; however, dense surface layer will also affect water movement behavior in case of artificially sintered aggregates. Factors affecting water movement behavior in the aggregate are pore distribution, pore shape, pre-wetting method, etc. In this study, absorption characteristics of aggregate under the pressure and absorption rate according to water dipping time are analyzed for the basis of pressure pumping of lightweight concrete. Two kinds of aggregates were used for the test: one is made by 'L' company in Germany and the other is of our own made at the pilot plant in Kyonggi University. Absorption rate of aggregate is measured according to water dipping time, vacuum pressure, and quenching condition. Absorption rate of aggregate with $300^{\circ}C$ quenching is higher than that of aggregate with 24 hr water dipping. Generally the more vacuum the higher water absorption rate. Water absorption rate of 'L' aggregate under -300 mmHg is 54 % higher than that of aggregate with 24 hr water dipping; however, only 2 % increase in water absorption was measured for the K622 and K73 which were of our own.

Development of Concrete and Evaluation of Properties of Combined Steel making Slag Aggregates for Offshore Structure Production (I) (해양구조물 제조를 위한 제강슬래그 골재 조합별 물성평가 및 콘크리트 개발( I ))

  • Jung, Won-Kyong;Hwang, Yun-Seok;Park, Dong-Cheon;Cho, Bong-Suk
    • Resources Recycling
    • /
    • v.25 no.2
    • /
    • pp.49-59
    • /
    • 2016
  • Steel slag is being recycled into industrial by-products for civil generated inevitably in the seasonal course, road and cement raw materials. However, the field of recycling most of the bottom portion is concentrated in the areas that are required to take advantage of the situation in various fields taking advantage of the steel slag. But various studies to take advantage of the steel slag as aggregate for concrete made for limiting slag was a situation that most of the studies are incomplete research on the suitability of as aggregate for concrete practical relates to an expandable suppressed. In this study, the separation of the slag aggregate according to the production methods to assess the feasibility aggregate for concrete aggregates, including through Steel making slag, a total of seven kinds of steel slag aggregate. Studies show that ordinary concrete, steel slag aggregate for aggregate and on the equally to take advantage of grading, chloride content standards such as to what is lacking, although appropriate aggregate of concrete include the deployment of only in special sectors through the combination was assessed to have a very high.

An Experimental Study on the Properties of the High Strength Crushed Sand Concrete Using Blast-Furnace Slag (고로슬래그를 사용한 고강도 부순모래 경화콘크리트의 물성에 관한 실험적 연구)

  • Choi, Young-Wha;Kim, Jong-In
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.3
    • /
    • pp.169-176
    • /
    • 2005
  • The purpose of this study is to develop the high strength crushed sand concrete in conditions of water binder ratios of 25, 30, 35% and blast-furnace slag substitutions of 0, 15, 30, 45%. Additionally, in case of water binder ratio of 30%, the maximum size of coarse aggregate is two kinds of 13, 19 mm. The conclusions of this study are as follows ; 1. The compressive strength appeared lower in early age as compared with that of plain concrete according to increasing of the blast-furnace slag substitution. But, the compressive strength was respectively 5, 6, 10% larger than that of plain concrete in case of 25, 30, 35% water binder ratios, 28 days, 30% blast-furnace slag substitution and 19mm coarse aggregate. 2. According to increasing of the blast-furnace slag substitution, the modulus of elasticity and the tensile strength of concrete increased. 3. The length change by the shrinkage increased when the larger coarse aggregate was used, and decreased according to higher blast-furnace slag substitution.

  • PDF

The Setting Time and Strength Development of Blast-Furnace Slag Powder Mortar According to Kinds of Fine Aggregate (잔골재 종류에 따른 고로슬래그 미분말 모르터의 응결시간 및 강도발현 특성)

  • Choi, Hyun-Kyu;Kim, Young-Hee;Son, Ho-Jung;Lee, Hyang-Jae;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.251-252
    • /
    • 2011
  • This study is to investigate experimentally the strength properties of mortar using recycled fine aggregates(RA) and blast furnace slag powder(BS) without cement according to type of fine aggregate. In the results of the study, compressive strength of RA was the highest. It can be considered that the results are due to the reaction of the non-hydration cement in RA to the latent hydraulicity reaction of the BS.

  • PDF

A Fundamental Study on the Development of Porous Concrete for Planting (식재용 다공질 콘크리트의 개발에 관한 기초적 연구)

  • 윤기원;이상태;김기철;황정하;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.912-915
    • /
    • 1998
  • As a fundamental study on the development of porous concrete for planting, this study is designed to present the properties of porous concrete by varying the kinds of cement, paste to aggregate ratio and dosage of AE admixture. As the results of experiment, the void volumes show 30~33%, 25~ 28% and 17~22% respectively, with paste to aggregate ratio of 20%, 30% and 40%. And unit weight is 1700~1900kg/㎥ while compressive strengths 40~60, 8 0~100 and 120~150kg/$\textrm{cm}^2$. pH of concrete shows a sufficient value at which the plant could grow, when the concrete is permeated in Ammonium Phosphate Dibasic for more than 1 hour. In brief, it shows a possibility of development of porous concrete if the concrete is permeated with permeating in Ammonium Phosphate Dibasic for more than 1 hour when the blast furnace slag cement is used.

  • PDF

A Experimental Study on the Freezing and Thawing of High-Strength Light Weight Aggregates Concrete (고강도 경량골재콘크리트의 동결융해에 대한 실험적 연구)

  • 박정권;최세규;한상묵;김생빈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.155-161
    • /
    • 1997
  • This Expriment is performed to describe the properties of the freezing-thawing and to find the method to enhance the freezing-thawing resistance of the high strength light weight aggregates concrete. For this purpose, we made 8 kinds of specimen of concrete mold. The light weight coarse aggregate concrete which contained AE was appeared in good condition and its durability index was more than 90% by the buffer action which owing to entained air. The light weight aggregates concrete which admixture of silca fume, was appeared that the durability index was 46.74% in spite of its high strength. I might conclude that the most important factor for freezing-thawing resistance of high strength light weight aggregate concrete is the entrained air.

  • PDF