• Title/Summary/Keyword: kick

Search Result 207, Processing Time 0.025 seconds

Effects of Reservoir Parameters on Kick Detection and Pit Volume Gain (저류층 인자가 킥의 감지와 킥의 부피에 미치는 영향)

  • Jonggeun Choe
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.145-150
    • /
    • 1999
  • As proven petroleum reserves decline through continued production. exploration for new oil and gas resources will extend into environments which present significant economic risks arid technical hurdles. Since safety is one of the biggest concerns in drilling operations. the oil industry routinely trains its personnel in areas which are critical for safe and economical drilling procedures. One of these major areas is well control. A kick is defined as an unscheduled flow of formation fluids into a wellhole. A kick occurs whenever the resultant wellbore pressure is less than the formation pressure in an exposed zone capable of producing kick fluids. The typical causes of reduced wellbore pressure are insufficient mud weight. inadequate fluid level in the hole, and swabbing.(omitted)

  • PDF

Development of Pyrogen Igniter for Kick Motor

  • Koh, Hyeon-Seok;Kil, Gyoung-Sub;Cho, In-Hyun;Kim, Yong-Woon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.301-306
    • /
    • 2008
  • A pyrogen igniter was designed to satisfy the required condition of kick motor system for the space launch vehicle. We analyzed the ignition characteristics and performed the combustion tests to verify the internal ballistic performance. In the design process, the arc-image test was carried out to find the sufficient heat flux as varying the initial pressure from 10 to 700kPa. The analysis indicated that the initial pressure condition would delay ignition time within a range from 100 to 500ms. The combustion test with an inert chamber was also performed to understand the ignition characteristics with the variation of the initial pressure of free chamber volume. Finally, we confirmed that the igniter could provide the acceptable energy to ignite the propellant of kick motor at the ground test. The result of the ground tests showed that the ignition delay time was within the design range at the atmospheric pressure condition.

  • PDF

Kinematic and Kinetic Analysis of Taekwondo Poomsae Side Kick according to Various Heights of the Target (태권도 품새 옆차기시 타겟 높이 변화에 따른 운동학적 분석)

  • Hong, Ah Reum;So, Jae Moo
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.3
    • /
    • pp.129-135
    • /
    • 2019
  • Objective: The purpose of this study is to present the scientific and quantitative data by finding the common points and differences of the side-kick according to the height change through the difference of the side kick motion performance according to the three target height changes and the function of the lower limbs muscle in side kick motion of Taekwondo Poomsae. Method: For this, total 14 players were selected who were registered in Korea Taekwondo Association and skilled group 7 players who had a medal from national competition and 7 players who did not have Taekwondo experience from department of physics. 4 video cameras to the feature on side kick per target height, and the subjects' support foot was located on the ground reactor and the practice was conducted 3 times: waist, chest, and head as the target height. the basic materials were collected by using Kwon 3D XP program and the T-test was conducted to verify the statistic difference between groups (SPSS 24.0). At this time, the statistics significance level was set as .05 and the following conclusion was obtained. Results: The lower the proficiency and the higher the height, the more the joint coordination between the hip and the knee. Conclusion: Summary of the result shows a common point that the change of target's height makes the lower the proficiency and the higher the height, the more the joint coordination between the hip and the knee. Also, the higher the target's height became, the greater angular momentum of thighs, shanks, foot became in common.

Comparison of Trunk and Lower Limb Muscle Activities on Kicking Motion in Elite and Non-elite Taekwondo Athletes (태권도 발차기 동작 시 숙련도에 따른 체간과 하지근육의 근 활성도 비교)

  • Hwang, Si Yeong;Shin, Yun A;Lee, Joon Hee
    • 한국체육학회지인문사회과학편
    • /
    • v.54 no.1
    • /
    • pp.515-525
    • /
    • 2015
  • The purpose of this study was to compare muscular activities according to the mastery of Taekwondo kicking motions with the subjects of 8 demonstration team members and 8 undergraduates in Taekwondo major at University. The muscles mainly used for Taekwondo's front kick, tornado kick, or turning hook kick are total 8 trunk muscles and 8 lower limb muscles of the kicking foot as well as the supporting foot. Analyzing the muscular activities of those areas comparatively, the study has reached the following results. At the front kick, non-experts showed higher lower abdominal muscle, biceps thigh muscle activity of the kicking foot and lateral gastrocnemius muscle activity of the supporting foot but lower 2 spinals muscular activity than experts. At the tornado kick (or turning kick), in the turning motion, experts indicated higher activity in biceps muscle of thigh and spinalis than non-experts whereas in the kicking motion, they didn't show the difference between groups except biceps thigh muscle activity. At the turning hook kick, non-experts indicated higher lateral gastrocnemius muscle activity of the kicking foot and quadricpes femoris muscle activity of supporting foot muscular activity than experts. In summary, experts tend to use their trunk in the turning motion for rapid turning and show rather low muscular activity of their kicking foot. However, non-experts indicate high muscular activity in their kicking foot and supporting foot, which means to maintain balance in the kicking motion, they tend to make use of their lower limb more than trunk muscle, and it leads to an inefficient motion.

Development and Performance Test of the Kick Motor Igniter (킥모터 점화기 개발 및 성능 시험)

  • Koh, Hyeon-Seok;Kil, Gyoung-Sub;Kim, Byung-Hun;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.190-200
    • /
    • 2007
  • A pyrogen type igniter was designed to satisfy the requirements of KSLV-I Kick Motor system. To insure the reliability of the igniter before the production of the flight model, we have been performed the structure, environmental, combustion tests. The hydraulic test was carried out to confirm the strength of the components of the igniter. The shock and vibration tests were considered to check whether the igniter operates normally under the severe environmental condition. The combustion tests were also performed to understand the ignition characteristics with the variation of initial condition. Finally, we confirmed that the igniter could provide the acceptable energy to ignite the propellant of kick motor at the ground test.

  • PDF

Numerical Analysis for Slag Deposition in the Kick Motor (킥모터 슬래그 적층에 대한 수치해석)

  • Jang, Je-Sun;Kim, Byung-Hun;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.131-143
    • /
    • 2008
  • Slag mass deposition was required to predict performance accurately of KSLV-I kick motor(KM) system. The validation of the numerical analysis was performed with mass flow rate measured at 4th ground test of the KM. The study described here included internal flow field of KM at various time steps during burning. Slag mass accumulation was computed through the aluminum oxide particle paths to deviate from the gas flow streamlines in flight. These numerical analysis was performed with Fluent 6.3 program The effects for the acceleration, origins and diameters of the aluminum oxide particles was analyzed, finally the total slag mass accumulation was acquired. We confirmed that the slag mass deposition was agreement well with predicted slag mass based on kick motor the grounded test.

  • PDF

Gait Implementation of a Biped Robot with Smooth Walking Pattern (유연한 보행 형태를 갖는 이족보행로봇의 걸음새 구현)

  • No, Gyeong-Gon;Gong, Jeong-Sik;Kim, Jin-Geol;Kim, Gi-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.43-50
    • /
    • 2002
  • This paper presents the new gait implementation of a biped robot with smooth walking using 3-dimensional continuous trunk motion and kick action of ankle joints. Trajectory generation ova trunk is performed not on a unit gait but on a whole walking interval. In applying kick action such as heel-touch or toe-off, varying coordinate system was employed for the simplification of the kinematic analysis. Desired ZMP (zero moment point) is also changed to implement the efficient kick action. As a result, balancing motion of the proposed gait was much more decreased than that of conventional one. Moreover, robot\\`s walking behavior is very smooth, natural and similar to the pace of a human. The walking experiment system is composed of eight AC servo motors and a DSP controller. The walking simulation and the experimental results are shown using the proposed new walking algorithm.

Thrust Measurement System for High Altitude Simulation Test of the KSLV-I Kick Motor (KSLV-I 킥모터 개발을 위한 고공환경모사시험용 추력측정장치)

  • Lee, Jung-Ho;Cho, Sang-Yeon;Cho, Kie-Joo;Jung, Dong-Ho;Lee, Han-Ju;Oh, Seung-Hyub;Yoon, Kyung-Youl;Kim, Dong-Cheol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.428-431
    • /
    • 2008
  • Korea Aerospace Research Institute(KARI) is achieving the Korea Space Launch Vehicle(KSLV) program according to National Space Technology Development Program. KSLV-I will be composed to liquid propellant(first stage) and solid propellant(second stage) propulsion system. The propulsion system of KSLV-I second stage is solid kick motor with high expansion ratio and its starting altitude is 300km high. In order to verify the performance of upper stage propulsion system designed to operate in the upper atmosphere, test facility which can simulate high altitude is needed. High Altitude Simulation Test Facility is composed to Thrust Measurement System, Control & Measurement system, Diffuser, SKID for cooling water supply to diffuser, CCTV, fire protection system and so on. This paper introduces TMS adapted to High Altitude Simulation Test for KSLV-I Kick Motor Development and results of hot firing test for its performance verification.

  • PDF

Prediction of the Blast Wave Propagation Over a Kick Motor Test Facility (Kick Motor 시험장 충격파 전파 예측)

  • Ok, Ho-Nam;Kim, In-Sun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.220-223
    • /
    • 2008
  • A test facility to measure the performance of a KM(Kick Motor) is constructed, and prediction of blast wave propagation over the facility is performed to check if the safety of test personnel in MCC(Main Control Center) can be guaranteed even for the most severe explosion. Assuming that the initial explosion energy is contained in a sphere under the pressure of 500, 1000, 1500 psi, respectively, the radius of the sphere is determined for each pressure to set the mass of contained explosion gas to 35 kg. The material properties of explosion gas are set to be the ones of KM propellant combustion gas under normal condition. To reduce the effort and time required for a complex three-dimensional modeling, the flowfield is approximated to axismmetry. Calculations are performed for all three initial pressure conditions, and the analysis of the result is given for 1500 psi which is expected to be the worst case. The maximum pressure is 3.5 psig while the minimum pressure is -1.2 psig on the outer wall of MCC, and the maximum pressure difference between the inner and outer walls of protection wall amounts to 3.0 psi.

  • PDF

A Kinematic Analysis of Taekwondo Juchumseogi hu Apkkoaseogi yeopchagi (태권도 주춤서기 후 앞꼬아서기 옆차기의 운동학적 분석)

  • Heo, Bo-Seob;Lee, Hyo-Taek;Lee, Jeong-Ki;Kim, Yong-Jae
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.3
    • /
    • pp.535-542
    • /
    • 2014
  • The purpose of this study was to analyze the movements of the lower extremity joints during a taekwondo kick motion called 'Juchumseogi hu Apkkoaseogi yeopchagi', which was administered to players to improve their balance, stability, and range of motion for the prevention of injuries. Eight professional players and amateur players were recruited as the subjects. Kinematic data were collected by four real-time infrared cameras. The hip joint, knee joint, and ankle joint angles were measured using instruments. During the 'Juchumseogi hu Apkkoaseogi yeopchagi' kick motion, there were small and inconsistent effects on each joint. This study processed the data using the Windows SPSS Ver. 18.0 to get an independent t-test, with the setting, p< .05. Results indicated that hip joint, knee joint, and ankle joint angles were almost significantly different between professional and amateur player during 'Juchumseogi hu apgeule Apkkoaseogi' kick motion.