• 제목/요약/키워드: key cylinder

검색결과 114건 처리시간 0.048초

A VERSION OF A CONVERSE MEASURABILITY FOR WIENER SPACE IN THE ABSTRACT WIENER SPACE

  • Kim, Bong-Jin
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제7권1호
    • /
    • pp.41-47
    • /
    • 2000
  • Johnson and Skoug [Pacific J. Math. 83(1979), 157-176] introduced the concept of scale-invariant measurability in Wiener space. And the applied their results in the theory of the Feynman integral. A converse measurability theorem for Wiener space due to the $K{\ddot{o}}ehler$ and Yeh-Wiener space due to Skoug[Proc. Amer. Math. Soc 57(1976), 304-310] is one of the key concept to their discussion. In this paper, we will extend the results on converse measurability in Wiener space which Chang and Ryu[Proc. Amer. Math, Soc. 104(1998), 835-839] obtained to abstract Wiener space.

  • PDF

A numerical solution to fluid-structure interaction of membrane structures under wind action

  • Sun, Fang-Jin;Gu, Ming
    • Wind and Structures
    • /
    • 제19권1호
    • /
    • pp.35-58
    • /
    • 2014
  • A numerical simultaneous solution involving a linear elastic model was applied to study the fluid-structure interaction (FSI) of membrane structures under wind actions, i.e., formulating the fluid-structure system with a single equation system and solving it simultaneously. The linear elastic model was applied to managing the data transfer at the fluid and structure interface. The monolithic equation of the FSI system was formulated by means of variational forms of equations for the fluid, structure and linear elastic model, and was solved by the Newton-Raphson method. Computation procedures of the proposed simultaneous solution are presented. It was applied to computation of flow around an elastic cylinder and a typical FSI problem to verify the validity and accuracy of the method. Then fluid-structure interaction analyses of a saddle membrane structure under wind actions for three typical cases were performed with the method. Wind pressure, wind-induced responses, displacement power spectra, aerodynamic damping and added mass of the membrane structure were computed and analyzed.

건설기계의 에너지 효율 제고를 위한 비-하이브리드 신기술에 관한 리뷰 (A Review on New Non-hybrid Technologies to Improve Energy Efficiency of Construction Machineries)

  • 조중선
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권3호
    • /
    • pp.53-66
    • /
    • 2016
  • New non-hybrid approaches to improve energy efficiency of construction machineries are reviewed in this paper. Hydraulic systems are classified into four classes according to Backe's classification and commercially promising new technologies are carefully chosen in each class. IMV, 3-Line CPR, Closed Circuit Displacement Control of Differential Cylinder, and Throttle-less Secondary Control are chosen as representative non-hybrid new technologies. Key principle of each technology is explained and representative references which run through each technology are selected. Advantages and weaknesses of each technology are discussed and compared from the view point of construction machinery manufacturers.

컨버팅 머신의 덴서 동특성 해석 (Dynamics of Dancer Systems in Converting Machines)

  • 강현규;성창엽;신기현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.65-66
    • /
    • 2006
  • Dancer systems are most widely used mechanism for attenuation of tension disturbances. Lately, demands fur high speed converting machines over 500mpm(m/min) are raising but domestic converting industries can not come up with the machines because capacities for a designing of the converting machine are restricted lower than 300mpm. Moreover roll-to-roll is attracted flexible display manufacturer's attention as a effective method for productivity. A constant tension level in the span before the first printing cylinder is the key of high speed quality printing. This paper presents a modeling and simulations of dancer systems on converting machines.

  • PDF

혈압파형에 초점을 맞춘 심혈관계 시뮬레이터의 개발 (Development of a Cardiovascular Simulator Focused on the Pressure Wave)

  • 이주연;장민;신상훈
    • 대한의용생체공학회:의공학회지
    • /
    • 제34권1호
    • /
    • pp.40-45
    • /
    • 2013
  • The conventional simulators used the expensive commercial artificial heart with a limited performance, and focused on replicating the heart function. The arterial pressure is the key factor of the cardiovascular disease. The purpose of this study is to develop a simulator focused on the pressure wave. The simulator is composed of a step motor, slider-crank mechanism, piston-cylinder, two check valves, a elastic tube, and two reservoirs. With the changes of design parameters, the functions of the simulator were evaluated. The simulator shows the good agreement of the characteristics of the cardiovascular system.

배골형단면(背骨刑斷面) 주상체(柱狀體)의 횡동요(橫動搖)에 있어서의 부가관성(附加慣性)모우먼트와 감쇠(減衰)모우먼트에 관하여 (Hydrodynamic Moments produced by Rolling Oscillation of Cylinders with Chine Sections)

  • 황종흘;이기표
    • 대한조선학회지
    • /
    • 제11권2호
    • /
    • pp.7-14
    • /
    • 1974
  • Hydrodynamic moments produced by the rolling oscillation on the free surface and the associated swaying force were exactly calculated by Ursell-Tasai method for the cylinders with Kim's chine form sections($a_1,\;a_7$). The coefficient of the added moment of inertia $K_{\varphi^{\tau}}$, the progressive wave height ratio $\bar{A}$, the coefficient of swaying forces $K_{RS}$, ${\alpha}_{RS}$ of rolling oscillations are shown in the several figures. The results of the computation were compared with those of lewis form sections. It is concluded that the effect of the section form on the added moment of inertia is significant for the cylinder with the section of same beam-draft ratio and sectional area coefficient, on the other hand, a little effect appears on the wave damping.

  • PDF

배기 브레이크용 솔레노이드 밸브의 특성 해석 (Characteristics Analysis of the Solenoid Valve for Exhaust Brake)

  • 윤소남;함영복
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.190-195
    • /
    • 2004
  • An exhaust brake system is composed of a gate valve, a pneumatic cylinder and an on-off solenoid valve. An on-off solenoid valve which is a key component of the exhaust brake system ought to have characteristics such as high reliability and long life for reducing the foot brake and tires damage, and for driver's fatigue relief of middle/large size vehicles running a long distance. In this paper, an on-off solenoid valve which is used for vehicle brake system was studied. For the performance evaluation of the on-off solenoid, electromagnetic characteristics and dynamic characteristics are analyzed. On the basic study for the performance improvement of exhaust brake system, pneumatic circuit and pneumatic valve of on-off solenoid type were suggested and the performance of pneumatic valve through the test procedure was evaluated.

엔진 마운트의 interm 브라켓 공진 주파수 target 설정에 관한 연구

  • 선정욱;우성근;전병근;김달식;강신남
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.769-772
    • /
    • 2013
  • When developing engine mount, interm mount bracket 1st resonance is critical to make sound quality better or worse. So, at the initial stage of development, we need to consider some design parameter to setup the target of interm bracket 1st resonance. Especially, 3cylinder interm bracket guideline is not well known. So, this paper deals with some important sensitivity which should be considered during the development of vehicle. From source to interior side, we should know the component sensitivity like body sensitivity p/F or bracket gain etc. Through this paper, we could get the knowledge of design guideline and key consideration points.

  • PDF

고속 롤투롤 시스템의 펜듈럼 덴서를 사용한 장력계어기 매칭 설계 (Matching Design of a Tension Controller with Pendulum Dancer in Roll-to-Roll Systems)

  • 강현규;신기현
    • 한국정밀공학회지
    • /
    • 제26권6호
    • /
    • pp.81-89
    • /
    • 2009
  • Dancer systems are typical equipment for attenuation of tension disturbances. Lately, demands for high speed roll-to-roll machines are rising but it is prior to attenuate the tension variation on the web entering into the printing zone to achieve the speed increment. Maintaining a constant tension before the first printing cylinder is the key of high speed, high quality printing. Dancer has been researched in two ways, whether it is controlled or not. The first one is active dancer and the other one is passive dancer. In the active dancer, a position of idle roll of dancer is measured and the roll is moved by external hydraulic cylinder to control tension disturbances. While the passive one composed with spring, damper and idle roll has no external actuator to position the idle roll. The tension disturbance causes movement of dancer roll and the displacement of the roll regulates the tension variation. On the other hand a composite type of dancer is applied for roll-to-roll printing machines. It has same apparatus as passive dancer. The displacement of roll is measured and front(or rear) driven roller is controlled to position the roll. In this paper, it is presented an analysis of pendulum dancer including position feedback PI control and logic for PI gain tuning in roll-to-roll machines. Pole-zero map and root locus with varying system parameters gives a design method for control of the dancer.

직접분사식 바이오에탄올-가솔린 혼합연료의 분무 및 희박연소 특성에 관한 실험적 연구 (An Experimental Study on the Spray and Lean Combustion Characteristics of Bio-enthanol-Gasoline Blended Fuel of GDI)

  • 박기영;강석호;김인구;임철수;김재만;조용석;이성욱
    • 한국분무공학회지
    • /
    • 제19권3호
    • /
    • pp.115-122
    • /
    • 2014
  • As a demand for an automobile increases, air pollution and a problem of the energy resources come to the fore in the world. Consequently, governments of every country established ordinances for green-house gas reduction and improvement of air pollution problem. Especially, as international oil price increases, engine using clean energy are being developed competitively with alternative transportation energy sources development policy as the center. Bio ethanol, one of the renewable energy produced from biomass, gained spotlight for transportation energy sources. Studies are in progress to improve fuel supply methods and combustion methods which are key features, one of the engine technologies. DI(Direct Injection), which can reduce fuel consumption rate by injecting fuel directly into the cylinder, is being studied for Green-house gas reduction and fuel economy enhancement at SI(Spark Ignition). GDI(Galoine Direct Injection) has an advantage to meet the regulations for fuel efficiency and $CO_2$ emissions. However it produces increased number of ultrafine particles, that yet received attention in the existing port-injection system, and NOX. As fuel is injected into the cylinder with high-pressure, a proper injection strategy is required by characteristics of a fuel. Especially, when alcohol type fuel is considered. In this study, we tried to get a base data bio-ethanol mixture in GDI, and combustion for optimization. We set fuel mixture rate and fuel injection pressure as parameters and took a picture with a high speed camera after gasoline-ethanol mixture fuel was injected into a constant volume combustion chamber. We figured out spraying characteristic according to parameters. Also, we determine combustion characteristics by measuring emissions and analyzing combustion.