• Title/Summary/Keyword: key characteristic parameters

Search Result 97, Processing Time 0.033 seconds

Reinforced Ion-exchange Membranes for Enhancing Membrane Capacitive Deionization (막 축전식 탈염 공정의 성능 향상을 위한 강화 이온교환막)

  • Min-Kyu Shin;Hyeon-Bee Song;Moon-Sung Kang
    • Membrane Journal
    • /
    • v.33 no.5
    • /
    • pp.257-268
    • /
    • 2023
  • Membrane capacitive deionization (MCDI) is a variation of the conventional CDI process that can improve desalination efficiency by employing an ion-exchange membrane (IEM) together with a porous carbon electrode. The IEM is a key component that greatly affects the performance of MCDI. In this study, we attempted to derive the optimal fabricating factors for IEMs that can significantly improve the desalination efficiency of MCDI. For this purpose, pore-filled IEMs (PFIEMs) were then fabricated by filling the pores of the PE porous support film with monomers and carrying out in-situ photopolymerization. As a result of the experiment, the prepared PFIEMs showed excellent electrochemical properties that can be applied to various desalination and energy conversion processes. In addition, through the correlation analysis between MCDI performance and membrane characteristic parameters, it was found that controlling the degree of crosslinking of the membranes and maximizing permselectivity within a sufficiently low level of membrane electrical resistance are the most desirable membrane fabricating condition for improving MCDI performance.

A Study on the Characteristic Method of Wearable Robot by Mission Profile (임무유형별 착용로봇 특성화 방안 연구)

  • Dowan Cha;Kyungtaek Lee;Joongeup Kye
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.444-455
    • /
    • 2023
  • In this report, a specialization plan for wearable robots by mission profile was investigated and analyzed to derive an application plan. The final goal of this study was to derive the operating requirements of wearable robots according to specialized plans, and to conduct a specialized study on wearable robots by mission profile through investigation/analysis of specialized plans for each mission profile. In the study, 1) Research on technology trends related to military wearable robots such as patents and papers, 2) Research/analysis of mission profiles to characterize wearable robots, 3) Analysis of wearable robot specialization plans according to mission profiles, and 4) Requirements for wearable robot operation were derived. In the first time of the study, a survey on technology trends related to wearable robots for soldiers such as patents and papers was completed, and a military consultative body was conducted to derive measures to characterize wearable robots. In addition, a survey was conducted on mission profiles, and the second time study derived Key Performance Parameters (KPP) for operational performance, core performance, and system performance based on scenarios by mission profile. However, it is revealed that the KPP derived from the research results was not covered in this paper because it was judged that more in-depth research was needed prior to disclosure. In order to prepare for future battlefield situations and increase the usability of wearable robots, this study was conducted to characterize wearable robots by considering the characteristics of soldiers' equipment according to mission profiles and to characterize wearable robots by mission profile.

Mixed-mode simulation of transient characteristics of 4H-SiC DMOSFETs - Impact off the interface changes (Mixde-mode simulation을 이용한 4H-SiC DMOSFETs의 계면상태에서 포획된 전하에 따른 transient 특성 분석)

  • Kang, Min-Seok;Choe, Chang-Yong;Bang, Wook;Kim, Sang-Chul;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.55-55
    • /
    • 2009
  • Silicon Carbide (SiC) is a material with a wide bandgap (3.26eV), a high critical electric field (~2.3MV/cm), a and a high bulk electron mobility (${\sim}900cm^2/Vs$). These electronic properties allow high breakdown voltage, high frequency, and high temperature operation compared to Silicon devices. Although various SiC DMOSFET structures have been reported so far for optimizing performances. the effect of channel dimension on the switching performance of SiC DMOSFETs has not been extensively examined. In this paper, we report the effect of the interface states ($Q_s$) on the transient characteristics of SiC DMOSFETs. The key design parameters for SiC DMOSFETs have been optimized and a physics-based two-dimensional (2-D) mixed device and circuit simulator by Silvaco Inc. has been used to understand the relationship with the switching characteristics. To investigate transient characteristic of the device, mixed-mode simulation has been performed, where the solution of the basic transport equations for the 2-D device structures is directly embedded into the solution procedure for the circuit equations. The result is a low-loss transient characteristic at low $Q_s$. Based on the simulation results, the DMOSFETs exhibit the turn-on time of 10ns at short channel and 9ns at without the interface charges. By reducing $SiO_2/SiC$ interface charge, power losses and switching time also decreases, primarily due to the lowered channel mobilities. As high density interface states can result in increased carrier trapping, or recombination centers or scattering sites. Therefore, the quality of $SiO_2/SiC$ interfaces is important for both static and transient properties of SiC MOSFET devices.

  • PDF

Application of Acoustic Emission for Assessing Deterioration in Reinforced Concrete Beams (철근 콘크리트 빔의 노화도 평가를 위한 음향방출 기술의 응용)

  • Yoon, Dong-Jin;Park, Phi-Lip;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.276-284
    • /
    • 2000
  • The acoustic emission (AE) behavior of reinforced concrete beams tested under flexural loading was investigated to characterize and identify the source of damage. This research was aimed at identifying the characteristic AE response associated with micro-crack development, localized crack propagation, corrosion, and debonding of the reinforcing steel. Concrete beams were prepared to isolate the damage mechanisms by using plain, notched-plain, reinforced, and corroded-reinforced specimens. The beams were tested using four-point cyclic step-loading. The AE response was analyzed to obtain key parameters such as the time history of AE events, the total number and rate of AE events, and the characteristic features of the waveform. Initial analysis of the AE signal has shown that a clear difference in the AE response is observed depending on the source of the damage. The Felicity ratio exhibited a correlation with the overall damage level, while the number of AE events during unloading can be an effective criterion to estimate the level of corrosion distress in reinforced concrete structures. Consequently, AE measurement characterization appears to provide a promising approach for estimating the level of deterioration in reinforced concrete structure.

  • PDF

Real-Time Variation of Water Quality with Water Depth in the Han River during the Spring Season (춘계 한강 수질의 실시간 수심별 변동특성)

  • Jung, Jin-Hong;Lim, Hyun-Man;Yoon, Young H.;Park, Jae-Roh;Kim, Weon-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.4
    • /
    • pp.184-192
    • /
    • 2016
  • A profiling monitoring system has been developed to monitor the water quality variations according to each water depth and applied for a test-bed. The key parameters were derived to disclose the aquatic ecology and environment of river systems, and the real-time monitoring techniques to profile the variations of each parameter were verified. Monitoring parameters were configured to include water quality, hydrodynamic, and weather conditions. Considering the water depth of the 4 major rivers in Korea, a profiling monitoring system with 1.0 m water depth interval for each monitoring has been established. To understand the real-time variation properties in the Han river, the monitoring system has been installed and operated at the YangHwa-Dock as a test-bed. Based on the results of the detailed analyses on the spring season, as the characteristic diurnal and water-depth-related variations for water temperature, pH, dissolved oxygen (DO), and chlorophyll-a were observed, it could be concluded that the real-time water-depth profiling monitoring system is a very effective tool for the proper management of river environment.

A Study on the Consolidation Characteristics Using the Constant Strain Rate Test of Remolded Gwangyang Marine Clay (일정변형률 시험을 이용한 재성형 광양 해성점토의 압밀특성 연구)

  • Jang, Joeng-Min;Kim, Jin-Young;Joeng, Woon-Ki;Choi, Jin;Jin, Young-Sik;Kang, Kwon-Soo;Baek, Won-Jin;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.33-43
    • /
    • 2014
  • Recently, the case to construct the structure on the soft clayey ground has increased and in order to the reduction of the cost of construction and maintenance on the social infrastructure facilities we have been trying to improve the soft clayey ground using the existing methods such as the pre-loading method and the vertical drain method. Like this, when various ground improvement methods are applied on the soft clayey ground, a long-term consolidation settlement will be key issue due to low permeability coefficient of cohesive soil. According to existing research results that relate to the consolidation settlement, the loading periods for existing the standard consolidation test (Oedometer test) to obtain the consolidation parameters are needed for minimum ten days or more. Therefore, in this study, the standard consolidation test (24 hours step-loading) and constant strain rate consolidation test changed by strain rate was performed using the remolded marine clay on Gwangyang bay composed of a soft clayey ground of the south-west coast. From the laboratory test results, the characteristics of compression, strain-effective stress relations by constant strain rate and the variation characteristic of the pore water pressure by different of loading speed and the relation between consolidation parameters and constant strain rate are compared and analyzed.

Personal Credit Evaluation System through Telephone Voice Analysis: By Support Vector Machine

  • Park, Hyungwoo
    • Journal of Internet Computing and Services
    • /
    • v.19 no.6
    • /
    • pp.63-72
    • /
    • 2018
  • The human voice is one of the easiest methods for the information transmission between human beings. The characteristics of voice can vary from person to person and include the speed of speech, the form and function of the vocal organ, the pitch tone, speech habits, and gender. The human voice is a key element of human communication. In the days of the Fourth Industrial Revolution, voices are also a major means of communication between humans and humans, between humans and machines, machines and machines. And for that reason, people are trying to communicate their intentions to others clearly. And in the process, it contains various additional information along with the linguistic information. The Information such as emotional status, health status, part of trust, presence of a lie, change due to drinking, etc. These linguistic and non-linguistic information can be used as a device for evaluating the individual's credit worthiness by appearing in various parameters through voice analysis. Especially, it can be obtained by analyzing the relationship between the characteristics of the fundamental frequency(basic tonality) of the vocal cords, and the characteristics of the resonance frequency of the vocal track.In the previous research, the necessity of various methods of credit evaluation and the characteristic change of the voice according to the change of credit status were studied. In this study, we propose a personal credit discriminator by machine learning through parameters extracted through voice.

Design of CFL Linearisation Chip for the Mobile Radio Using Ultra-Narrowband Digital Modulation (디지털 초협대역 단말기용 CFL 선형화 칩 설계)

  • Chong Young-Jun;Kang Min-Soo;Yoo Sung-Jin;Chung Tae-Jin;Oh Seung-Hyeub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.7 s.98
    • /
    • pp.671-680
    • /
    • 2005
  • The CFL linearisation chip which is one of key devices in ultra-narrowband mobile radio transmitter using CQPSK digital modulation method is designed and implemented with $0.35{\mu}m$ CMOS technology. The reduced size and low cost of transmitter are available by the use of direct-conversion and CFL ASIC chip, which improve the power effi챠ency and linearity of transmitting path. In addition, low power operation is possible through CMOS technology The performance test results of transmitter show -25 dBc improvement of IMD level at the 3 kHz frequency offset and then satisfy FCC 47 CFR 90.210 E emission mask in the operation of CFL ASIC chip. At that time, the transmitting power is about PEP(Peak-to-Envelope Power) 5 W. The main parameters to improve the transmitting characteristic and to compensate the distortion in feed back loop such as DC-offset, loop gain and phase value are interfaced with notebook PC to be controlled with S/W.

Identification of Bulgogi Sauce Added with Low Quantity of Electron Beam-Irradiated Garlic Powders by Thermoluminescence Analysis: An Inter-Laboratory Study (전자선 조사 처리한 마늘분말 첨가 불고기소스의 혼합비와 살균처리에 따른 열발광 판별특성: 실험실 교차 검증시험)

  • Ahn, Jae-Jun;Lee, Jeongeun;Baek, Ji-Yeong;Jeong, Il-Yun;Kwon, Joong-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.11
    • /
    • pp.1857-1863
    • /
    • 2013
  • Bulgogi sauces containing electron beam-irradiated garlic powder (1%, 3%, and 5%) were used to compare their irradiation status before and after pasteurization ($85^{\circ}C$, 30 min), using a thermoluminescence (TL) analysis by two different laboratories. The sauces with non-irradiated ingredient only provided a background TL glow curve with a maximum peak after $300^{\circ}C$. However, the presence of irradiated ingredient (1 and 10 kGy) was evident through the typical TL glow curves in a temperature range of 150 to $250^{\circ}C$. The concentration of irradiated ingredients showed a greater impact on identification characteristics than their radiation doses. TL ratios ($TL_1/TL_2$) were not able to confirm the results showing evidence of irradiation through the TL glow curve shapes. Pasteurization showed a negligible effect on the key identification parameters and did not change the shape or temperature range of radiation-specific TL glow peak, but reduced TL glow curve intensity. TL glow curve shape with the maximum peak in a temperature range of $150{\sim}250^{\circ}C$ was the most useful characteristic providing information required for confirming the irradiation status.

Cesium Release Behavior during the Thermal Treatment of High Bum-up Spent PWR Fuel (고연소도 경수로 사용후핵연료의 열처리에 따른 세슘 방출거동)

  • Park, Geun-Il;Cho, Kwang-Hun;Lee, Jung-Won;Park, Jang-Jin;Yang, Myung-Seung;Song, Kee-Chan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.53-64
    • /
    • 2007
  • The dynamic release behavior of Cs from high burn-up spent PWR fuel was experimentally performed under the conditions of a thermal treatment process such as voloxidation and sintering conditions. In voloxidation process, influence of the oxidation and reduction atmosphere on the Cs release characteristic using fragment type of spent fuel heated up to $1,500^{\circ}C$ was compared. In sintering process, temperature history effect on Cs release behavior was evaluated using green pellet under 4% $H_2/Ar$ environment. Temperature range for complete Cs release from spent fuel fragment under voloxidation condition was about $800^{\circ}C{\sim}1,200^{\circ}C$, but that of green pellet under the reduction atmosphere was $1,100^{\circ}C{\sim}1,400^{\circ}C$. Key parameters on Cs release behavior from spent fuel was powder formation as well as the diffusion rate of Cs compound to grain boundary and fuel surface.

  • PDF