• Title/Summary/Keyword: kVp

Search Result 839, Processing Time 0.026 seconds

Investigation of Tube Voltage Range using Dose Comparison based on Effective Detector Exposure Index in Chest Radiography (흉부 X-ray 검사 시 선량 비교를 활용한 유효 Detector Exposure Index 기반의 적절한 관전압 범위 제안)

  • Shim, Jina;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.139-145
    • /
    • 2021
  • This study is to confirm the range of tube voltage for Chest X-ray in DR system by comparing with dose area product (DAP) and effective dose in efficient detector exposure index (DEI) range. GE definium 8000 was used to for the phantom study. The range of tube voltage is 60~130 kVp and of mAs is 2.5~40 mAs. The acquired images were classified into efficient DEI groups, then calculated effective dose with DAP by using a PC-Based Monte Carlo Program 2.0. The signal to noise ratio (SNR) was measured at 4 regions, including the thoracic spine, the lung area with the ribs, the lung area without the ribs, and the liver by using Picture Archiving and Communication System. The significance of the group for each tube voltage was verified by performing the kruskal-wallis test and the mann-whitney test as a post-test. When set to 4 groups dependned on the tube voltage, DAP showed significant differences; 60 kVp and 80 kVp, and 60 kVp and 90 kVp (p= 0.034, 0.021). Effective dose exhibited no statistically significant differences from the all of the group (p>0.05). SNR exhibited statistically significant differences from the all of the group in the liver except compared to 80 kVp and 90 kVp (p<0.05). Therefore, high tube voltages of 100 kVp or more need to be reconsidered in terms of patient dose and imaging in order to represent an appropriate chest X-ray image in a digital system.

Production of Recombinant Rotavirus Capsid Protein VP7 from Stably Transformed Drosophila melanogaster S2 Cells

  • Park, Jong-Hwa;Chang, Kyung-Hwa;Lee, Youn-Hyung;Kim, Hae-Yeong;Yang, Jai-Myung;Chung, In-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.563-568
    • /
    • 2002
  • Stably transformed Drosophila melanogaster 52 cells producing recombinant VP7 were obtained, and recombinant VP7 expression was confirmed by Western blot analysis. The molecular weight of recombinant VP7 expressed in 52 cells was approximately 35.5 kDa, and 75% of the total VP7 produced was present in the medium. Recombinant VP7 contained N-linked glycosylated oligosaccharides. Aprotinin, leupeptin, and polyvinylpyrrolidone did not have any noticeable effect on recombinant VP7 production; however, DMSO and sodium butyrate increased its production by 120% and 60%, respectively.

Production and diagnostic application of monoclonal antibodies against infectious bursal disease virus (IBDV에 대한 단크론항체 생산 및 진단적 응용)

  • Ryu, Min-Sang;Song, Yoon-Ki;Lee, Seung-Chul;Mo, In-Pil;Kang, Shien-Young
    • Korean Journal of Veterinary Service
    • /
    • v.34 no.1
    • /
    • pp.5-12
    • /
    • 2011
  • Infectious bursal disease (IBD) caused by infectious bursal disease virus (IBDV) is a highly contagious viral disease in chicken. It causes heavy economic loss by immune suppression and high mortality. The IBDV, designated Avibirnavirus in the Family Birnaviridae, has a double-stranded RNA genome formed by two segments, segment A and segment B. Segment A encodes a 108 KDa polypeptide that is self-cleaved to produce pVP2, VP3 and VP4, and later pVP2 is cleaved to VP2. The VP2 contains the antigenic regions responsible for elicitation of neutralizing antibodies and VP3 is a major immunogenic protein of IBDV. In this study, monoclonal antibodies (MAbs) specific for IBDV were produced and characterized. All 15 MAbs were specific for IBDV and did not react with other viruses used in this study. The protein specificity of MAbs was determined by comparing the reactivity patterns of each MAb with IBDV VP2 and VP234 recombinant baculoviruses and Western blot analysis. As a result, 7 MAbs (1F5, 2C8, 2F4, 3C7, 4C3, 6F11, 6G5) and 5 MAbs (2A4, 2G2, 3F5, 3G2, 4F10) were specific for VP2 and VP3, respectively. The protein specificity of 3 MAbs (2B8, 3F7, 3F8) were not determined. Five (2C8, 2F4, 4C3, 6F11, 6G5) of the VP2-specific MAbs had a neutralizing activity against IBDV. Some MAbs reacted with IBDV-infected bursa of Fabricius by indirect fluorescence antibody (IFA) and immunohistochemistry (IHC) assay. The MAbs produced in this study would be used for diagnostic reagents for the detection of IBDV infection.

Optimal Exposure Conditions according to Detector Type in Chest Digital Radiography (디지털흉부X선촬영에서 검출기 방식에 따른 최적의 노출조건)

  • Lee, Won-Jeong
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.213-221
    • /
    • 2015
  • The aim of this study was to set up the optimal exposure condition according to detector type considering image quality (IQ) with radiation dose in chest digital radiography. We used three detector type such as flat-panel detector (FP) and computed radiography (CR), and charge-coupled device (CCD). Entrance surface dose (ESD) was measured at each exposure condition combined tube voltage with tube current using dosimeter, after attaching on human phantom, it was repeated 3 times. Phantom images were evaluated independently by three chest radiologists after blinding image informations. Standard exposure condition using each institution was 117 kVp-AEC at FP and 117 kVp-8 mAs at CR, and 117 kVp-8 mAs at CCD. Statistical analysis was performed by One way ANOVA (Dunnett T3 test) using SPSS ver. 19.0. In FP, IQ scores were not significant difference between 102 kVp-4 mAs and 117 kVp-AEC (28.4 vs. 31.1, p=1.000), even though ESD was decreased up to 50% ($62.3{\mu}Gy$ vs. $125.1{\mu}Gy$). In CR, ESD was greatly decreased from 117 kVp-8 mAs to 90 kVp-8 mAs without significant difference of IQ score (p=1.000, 24.6 vs. 19.5). In CCD, IQ score of 117 kVp-8 mAs was similar with 109 kVp-8 mAs (29.6 vs. 29.0), with decreasing from $320.8{\mu}Gy$ to $284.7{\mu}Gy$ (about 11%). We conclude that optimal x-ray exposure condition for chest digital radiography is 102 kVp-4 mAs in FP and 90 kVp-8 mAs in CR, and 109 kVp-8 mAs in CCD.

Evaluation of Image Quality in Low Tube-Voltage Chest CT Scan (흉부 CT 검사 시 저 관전압 영상의 화질평가에 관한 연구)

  • Kim, Hyun-Ju;Cho, Jae-Hwan;Park, Cheol-Soo
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.4
    • /
    • pp.135-141
    • /
    • 2010
  • Purpose : The patients who visited this department for pulmonary disease and need CT scans for Follow-up to observe change of CT value, evaluation of image quality and decrease of radiation dose as change of kVp. Subjects and Methods : Subjects were the patients of 20 persons visited this department for pulmonary disease and Somatom Sensation 16(Semens, Enlarge, Germany) was used. Measurement of CT value as change of kVp was done by setting up ROI diameter of 1cm at the height of thyroid, aortic arch, right pulmonary artery in arterial phase image using 100 kVp, measuring 3 times, and recorded the average. CT value of phantom was measured by scanning phantoms which means contrast media diluted by normal saline by various ratio with tube voltage of 80 kVp, 100 kVp, 120 kVp, 140 kVp and recorded the average of 3 CT values of center of phantom image. In analysing radiation dose, CTDIVOL values of the latest arterial phase image of 120 kVp and as this research set that of 100 kVp were analyzed comparatively. 2 observers graded quality of chest images by 5 degrees (Unacceptable, Suboptimal, Adequate, Good, Excellent). Results : CT value of chest image increased at 100 kVp by 14.06%~27.26% in each ROI than 120 kVp. CT value of phantom increased as tube voltage lowered at various concentration of contrast media. CTDIVOL decreased at 100 kVp(5.00 mGy) by 36% than 120 kVp(7.80 mGy) in radiation dose analysis. here were 0 Unacceptable, 1 Suboptimal, 3 Adequate, 10 Good, 6 Excellent in totally 20 persons. Conclusion : Chest CT scanning with low kilo-voltage for patients who need CT scan repeatedly can bring images valuable for diagnose, and decrease radiation dose against patients.

Production of the Antiserum against Recombinant Envelop Protein, rVP466 for the Neutralization of White Spot Syndrome Virus (WSSV) (흰반점바이러스(WSSV)의 중화를 위한 재조합단백질 rVP466의 항혈청 생산)

  • Gong, Soo-Jung;Kim, Yeong-Jin;Choi, Mi-Ran;Kim, Sung-Koo
    • Journal of Life Science
    • /
    • v.20 no.10
    • /
    • pp.1427-1432
    • /
    • 2010
  • This study was carried out to evaluate neutralization effects against WSSV using antiserum produced from recombinant envelop protein, rVP466 of WSSV. The VP466 gene of WSSV was cloned into pCold I expression vector and rVP466 was expressed in E. coli RIPL. The antiserum against rVP466 was produced in white rabbits (New Zealand white rabbit). The specific immunoreactivity to the antigen, rVP466, was confirmed by Western blot. The constant amounts of WSSV at $1{\times}10^4$ diluted stocks were mixed with various antiserum concentrations and then injected to the muscle of shrimp, Penaeus chinensis, for the neutralization challenge. The shrimps challenged with WSSV as a positive control and those with the mixture of WSSV and preimmune serum as a preimmune control showed 100% cumulative mortality at 17 days post challenge and 83% at 25 days post challenge, respectively. The shrimps challenged with 3 different mixtures of WSSV and rVP466 antiserum at ratios of 1:0.01, 1:0.1 and 1:1 showed 73%, 53% and 46% cumulative mortalities at 25 days post challenge, respectively. These results indicated that WSSV could be neutralized by the rVP466 antiserum. These results suggest that envelop protein VP466 is involved in the initial step of WSSV infection in shrimp.

Effects of Radiation Dose and Image Quality at the Coronary Angiography (관상동맥검사에서 선량과 화질에 관한 연구)

  • Ryu, Myung-Song;Choi, Nam-Gil;Han, Jae-Bok;Yang, Sook;Lee, Jong-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.4
    • /
    • pp.367-372
    • /
    • 2012
  • The aim of this study was to assess the effect of exposure factors such as kVp and mA applied by BMI on the image quality and patients absorbed dose of Coronary angiography in CT. Each data sets were into 4groups with different exposure values : Group A at 100kVp, 240mAs, Group B at 120kVp, 240mAs, Group C at 100kVp, 270mAs and Group D at 120kVp, 270mAs, and the mean of the scores of 4 groups was calculated for image quality as 4grades that is, 1(poor), 2(fair), 3(good) and 4(very good). Patient absorbed dose was calculated as DLP on the monitor. In case of absorbed dose, deviation in 2groups at 100kVp was 5.6 $mGy{\cdot}cm$, 11 $mGy{\cdot}cm$, was at 120kVp(DLP) with p<0.05. There was rather difference between groups with 100kVp or 120kVp respectively but the gaps were very little. No significant correlation was found between exposure factors and image quality in any images assessed(p>0.05), and the image quality was sufficient for diagnosis. As we applying coronary angiography, the selection of adequate exposure factors considering BMI identified might be effective for reduction of patient absorbed dose, improvement of image quality and diagnostic accuracy.

Image Evaluation and Exposure Dose with the Application of Tube Voltage and Adaptive Statistical Iterative Reconstruction of Low Dose Computed Tomography (저 선량 전산화단층촬영의 관전압과 적응식 통계적 반복 재구성법 적용에 따른 영상평가 및 피폭선량)

  • Moon, Tae-Joon;Kim, Ki-Jeong;Lee, Hye-Nam
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.261-267
    • /
    • 2017
  • The study has attempted to evaluate and compare the image evaluation and exposure dose by respectively applying filter back projection (FBP), the existing test method, and adaptive statistical iterative reconstruction (ASIR) with different values of tube voltage during the low dose computed tomography (LDCT). With the image reconstruction method as basis, chest phantom was utilized with the FBP and ASIR set at 10%, 20% respectively, and the change of tube voltage (100 kVp, 120 kVp). For image evaluation, back ground noise, signal-noise ratio (SNR) and contrast-noise ratio (CNR) were measured, and, for dose assessment, CTDIvol and DLP were measured respectively. In terms of image evaluation, there was significant difference in ascending aorta (AA) SNR and inpraspinatus muscle (IM) SNR with the different amount of tube voltage (p < 0.05). In terms of CTDIvol, the measured values with the same tube voltage of 120 kVp were 2.6 mGy with no-ASIR and 2.17 mGy with 20%-ASIR respectively, decreased by 0.43 mGy, and the values with 100 kVp were 1.61 mGy with no-ASIR and 1.34 mGy with 20%-ASIR, decreased by 0.27 mGy. In terms of DLP, the measured values with 120 kVp were $103.21mGy{\cdot}cm$ with no-ASIR and $85.94mGy{\cdot}cm$ with 20%-ASIR, decreased by $17.27mGy{\cdot}cm$ (about 16.7%), and the values with 100 kVp were $63.84mGy{\cdot}cm$ with no-ASIR and $53.25mGy{\cdot}cm$ with 20%-ASIR, a decrease by $10.62mGy{\cdot}cm$ (about 16.7%). At lower tube voltage, the rate of dose significantly decreased, but the negative effects on image evaluation was shown due to the increase of noise.

Expression of Rotavirus Capsid Proteins VP6 and VP7 in Mammalian Cells Using Semliki Forest Virus-Based Expression System

  • Choi, Eun-Ah;Kim, Eun;Oh, Yoon-I;Shin, Kwang-Soon;Kim, Hyun-Soo;Kim, Chul-Joong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.463-469
    • /
    • 2002
  • Rotaviruses are the world-wide leading causative agents of severe dehydrating gastroenteritis in young children and animals. The outer capsid glycoprotein VP7 and inner capsid glycoprotein VP6 of rotaviruses are highly antigenic and immunogenic. An SFV-based expression system has recently emerged as a useful tool for heterologous protein production in mammalian cells, exhibiting a much more efficient performance compared to other gene expression systems. Accordingly, the current study adopted an SFV-based expression system to express the VP7 of a group A human rotavirus from a Korean isolate, and the VP6 of a group B bovine rotavirus from a Korean isolate, in mammalian cells. The genes of the VP6 and VP7 were inserted into the SFV expression vector pSFV-1. The RNA was transcribed in vitro from pSFV-VP6 and pSFV-VP7 using SP6 polymerase. Each RNA was then electroporated into BHK-21 cells along with pSFV-helper RNA containing the structural protein gene without the packaging signal. The expression of VP6 and VP7 in the cytoplasm was then detected by immunocytochemistry. The recombinant virus was harvested by ultracentrifugation and examined under electron microscopy. After infecting BHK-21 cells with the defective viruses, the expressed proteins were separated by SDS-PAGE and analyzed by a Western blot. The results indicate that an SFV-based expression system fur the VP6 and VP7 of rotaviruses is an efficient tool for developing a diagnostic kit and/or preventive vaccine.

A Phantom Study for the Optimal Low-dose Protocol in Chest Computed Tomography Examination (흉부 전산화단층촬영검사를 위한 최적의 저선량 프로토콜에 관한 팬텀연구)

  • Kim, Young-Keun;Yang, Sook;Wang, Tae-uk;Kim, Eun-Hye
    • Journal of radiological science and technology
    • /
    • v.44 no.2
    • /
    • pp.101-107
    • /
    • 2021
  • The purpose of this study was to evaluate optimal CT scan parameters to minimize patient dose to the irradiation and maintain satisfactory image quality in low-dose chest computed tomography (CT) scans. In a chest anthropomorphic phantom, chest CT scans were performed at different kVp and mA within reference of 3.4mGy in volume CT Dose Index (CTDIvol). The following quantitative parameters had been statistically evaluated: image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and figure of merit (FOM). Nine radiographers conducted the blind test to select the optimal kVp-mA combination. Results indicated that the kVp-mA combination of 80kVp-90mA, 100kVp-50mA, 120kVp-30mA and 140kVp-30mA were obtained high SNR and CNR. The 120kVp-30mA combination offered good compromise in the FOM, which showed the quality and dose performance. In the blind test, an image of 80kVp-90mA obtained a high score with 4.7 points, and 120kVp-10mA or 140kVp-10mA with a low tube current were observed severe noise and poor image quality, thus resulting in decreased diagnostic accuracy. On the other hand, in the combination of high kVp and high mA(140kVp-90mA), the image quality was improved, but the radiation dose was also increased. the FOM value of 140kVp-90mA was lower than 120kVp-30mA. The application of appropriate scan parameters in low-dose chest CT scans produced satisfactory results in dose and image quality for the accuracy of the clinical diagnosis.