• Title/Summary/Keyword: kV X선 영상

Search Result 28, Processing Time 0.019 seconds

Development of an Automatic Seed Marker Registration Algorithm Using CT and kV X-ray Images (CT 영상 및 kV X선 영상을 이용한 자동 표지 맞춤 알고리듬 개발)

  • Cheong, Kwang-Ho;Cho, Byung-Chul;Kang, Sei-Kwon;Kim, Kyoung-Joo;Bae, Hoon-Sik;Suh, Tae-Suk
    • Radiation Oncology Journal
    • /
    • v.25 no.1
    • /
    • pp.54-61
    • /
    • 2007
  • [ $\underline{Purpose}$ ]: The purpose of this study is to develop a practical method for determining accurate marker positions for prostate cancer radiotherapy using CT images and kV x-ray images obtained from the use of the on- board imager (OBI). $\underline{Materials\;and\;Methods}$: Three gold seed markers were implanted into the reference position inside a prostate gland by a urologist. Multiple digital image processing techniques were used to determine seed marker position and the center-of-mass (COM) technique was employed to determine a representative reference seed marker position. A setup discrepancy can be estimated by comparing a computed $COM_{OBI}$ with the reference $COM_{CT}$. A proposed algorithm was applied to a seed phantom and to four prostate cancer patients with seed implants treated in our clinic. $\underline{Results}$: In the phantom study, the calculated $COM_{CT}$ and $COM_{OBI}$ agreed with $COM_{actual}$ within a millimeter. The algorithm also could localize each seed marker correctly and calculated $COM_{CT}$ and $COM_{OBI}$ for all CT and kV x-ray image sets, respectively. Discrepancies of setup errors between 2D-2D matching results using the OBI application and results using the proposed algorithm were less than one millimeter for each axis. The setup error of each patient was in the range of $0.1{\pm}2.7{\sim}1.8{\pm}6.6\;mm$ in the AP direction, $0.8{\pm}1.6{\sim}2.0{\pm}2.7\;mm$ in the SI direction and $-0.9{\pm}1.5{\sim}2.8{\pm}3.0\;mm$ in the lateral direction, even though the setup error was quite patient dependent. $\underline{Conclusion}$: As it took less than 10 seconds to evaluate a setup discrepancy, it can be helpful to reduce the setup correction time while minimizing subjective factors that may be user dependent. However, the on-line correction process should be integrated into the treatment machine control system for a more reliable procedure.

Evaluation of Geometric Correspondence of kV X-ray Images, Electric Portal Images and Digitally Reconstructed Radiographic Images (kV X선 영상, 전자조사문 영상, 디지털화재구성 영상 간 기하학적 일치성 평가)

  • Cheong, Kwang-Ho;Kim, Kyoung-Joo;Cho, Byung-Chul;Kang, Sei-Kwon;Juh, Ra-Hyeong;Bae, Hoon-Sik;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.118-125
    • /
    • 2007
  • In this study we estimated a geometric correlation among digitally reconstructed radiographic image (DRRI), kV x-ray image (kVXI) from the On-Board Imager (OBI) and electric portal image (EPI). To verify geometric correspondence of DRRI, kVXI and EPI, specially designed phantom with indexed 6 ball bearings (BBs) were employed. After accurate setup of the phantom on a treatment couch using orthogonal EPIs, we acquired set of orthogonal kVXIs and EPIs then compared the absolute positions of the center of the BBs calculated at each phantom plane for kVXI and EPI respectively. We also checked matching result for obliquely incident beam (gantry angle of $315^{\circ}$) after 2D-2D matching provided by OBI application. A reference EPI obtained after initial setup of the phantom was compared with 10 series of EPIs acquired after each 2D-2D matching. Imaginary setup errors were generated from -5 mm to 5 mm at each couch motion direction. Calculated positions of all center positions of the BBs at three different images were agreed with the actual points within a millimeter and each other. Calculated center positions of the BBs from the reference and obtained EPIs after 2D-2D matching agreed within a millimeter. We could tentatively conclude that the OBI system was mechanically quite reliable for image guided radiation therapy (IGRT) purpose.

  • PDF

Diagnostic Classification of Chest X-ray Pneumonia using Inception V3 Modeling (Inception V3를 이용한 흉부촬영 X선 영상의 폐렴 진단 분류)

  • Kim, Ji-Yul;Ye, Soo-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.773-780
    • /
    • 2020
  • With the development of the 4th industrial, research is being conducted to prevent diseases and reduce damage in various fields of science and technology such as medicine, health, and bio. As a result, artificial intelligence technology has been introduced and researched for image analysis of radiological examinations. In this paper, we will directly apply a deep learning model for classification and detection of pneumonia using chest X-ray images, and evaluate whether the deep learning model of the Inception series is a useful model for detecting pneumonia. As the experimental material, a chest X-ray image data set provided and shared free of charge by Kaggle was used, and out of the total 3,470 chest X-ray image data, it was classified into 1,870 training data sets, 1,100 validation data sets, and 500 test data sets. I did. As a result of the experiment, the result of metric evaluation of the Inception V3 deep learning model was 94.80% for accuracy, 97.24% for precision, 94.00% for recall, and 95.59 for F1 score. In addition, the accuracy of the final epoch for Inception V3 deep learning modeling was 94.91% for learning modeling and 89.68% for verification modeling for pneumonia detection and classification of chest X-ray images. For the evaluation of the loss function value, the learning modeling was 1.127% and the validation modeling was 4.603%. As a result, it was evaluated that the Inception V3 deep learning model is a very excellent deep learning model in extracting and classifying features of chest image data, and its learning state is also very good. As a result of matrix accuracy evaluation for test modeling, the accuracy of 96% for normal chest X-ray image data and 97% for pneumonia chest X-ray image data was proven. The deep learning model of the Inception series is considered to be a useful deep learning model for classification of chest diseases, and it is expected that it can also play an auxiliary role of human resources, so it is considered that it will be a solution to the problem of insufficient medical personnel. In the future, this study is expected to be presented as basic data for similar studies in the case of similar studies on the diagnosis of pneumonia using deep learning.

The Defect Characterization of digital imaging Crystals by radiation exposed (디지털 영상 형광체의 방사선 노출에 의한 결함 특성)

  • Kim, Chang-Gyu
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05a
    • /
    • pp.327-331
    • /
    • 2012
  • 양전자 소멸 분광법을 이용하여 X선으로 디지털 의료 영상을 회득하는 형광체를 X선 조사에 의한 형광체의 원자 크기 정도 결함의 특성을 조사하였다. 양전자와 전자의 쌍소멸에서 발생하는 511 KeV 감마선 스펙트럼의 수리적 해석 방법인 S-변수를 사용하여 결함의 정도를 측정하였다. 임상에서 X-선을 이용한 디지털 의료영상을 획득할 때 형광체로 사용하고 있는 시료를 사용기간별로 0, 2, 4, 6 구분하여 시료를 실험하였다. 각 시료들에서 측정된 S-변수는 0.4932부터 0.4956 정도의 변화를 보였다. 이에 상응하는 실험 방법으로 같은 시료에 X-선의 에너지와 조사시간 즉 6 MV 및 15 MV의 X-선을 사용하여 3, 6, 9, 그리고 12 Gy의 조사량을 변화시키면서 결함의 정도를 측정 비교하였다. 이 결과 형광체가 시용기간이 길어서 X선에 노출된 횟수가 많을수록 결함의 정도는 증가하는 경향을 보였고 X선의 에너지 강도가 강할수록 결함의 정도가 증가하는 경향을 보였다. 이것은 방사선에 노출된 빈도가 많을수록 영상을 획득하는데 보다 많은 선량이 요구되는 점과 영상의 화질이 저하는 현상을 결함특성 측정을 통하여 규명 하였다.

  • PDF

A Study on the Availability of the On-Board Imager(OBI) and Cone-Beam CT(CBCT) in the Verification of Patient Set-up (온보드 영상장치(On-Board Imager) 및 콘빔CT(CBCT)를 이용한 환자 자세 검증의 유용성에 대한 연구)

  • Bak, Jino;Park, Sung-Ho;Park, Suk-Won
    • Radiation Oncology Journal
    • /
    • v.26 no.2
    • /
    • pp.118-125
    • /
    • 2008
  • Purpose: On-line image guided radiation therapy(on-line IGRT) and(kV X-ray images or cone beam CT images) were obtained by an on-board imager(OBI) and cone beam CT(CBCT), respectively. The images were then compared with simulated images to evaluate the patient's setup and correct for deviations. The setup deviations between the simulated images(kV or CBCT images), were computed from 2D/2D match or 3D/3D match programs, respectively. We then investigated the correctness of the calculated deviations. Materials and Methods: After the simulation and treatment planning for the RANDO phantom, the phantom was positioned on the treatment table. The phantom setup process was performed with side wall lasers which standardized treatment setup of the phantom with the simulated images, after the establishment of tolerance limits for laser line thickness. After a known translation or rotation angle was applied to the phantom, the kV X-ray images and CBCT images were obtained. Next, 2D/2D match and 3D/3D match with simulation CT images were taken. Lastly, the results were analyzed for accuracy of positional correction. Results: In the case of the 2D/2D match using kV X-ray and simulation images, a setup correction within $0.06^{\circ}$ for rotation only, 1.8 mm for translation only, and 2.1 mm and $0.3^{\circ}$ for both rotation and translation, respectively, was possible. As for the 3D/3D match using CBCT images, a correction within $0.03^{\circ}$ for rotation only, 0.16 mm for translation only, and 1.5 mm for translation and $0.0^{\circ}$ for rotation, respectively, was possible. Conclusion: The use of OBI or CBCT for the on-line IGRT provides the ability to exactly reproduce the simulated images in the setup of a patient in the treatment room. The fast detection and correction of a patient's positional error is possible in two dimensions via kV X-ray images from OBI and in three dimensions via CBCT with a higher accuracy. Consequently, the on-line IGRT represents a promising and reliable treatment procedure.

The signal property and structure design of CsI:Na/a-Se for diagnostic x-ray imaging (진단 X선 영상을 위한 CsI:Na/a-Se 구조설계 및 신호특성)

  • Park, Ji-Koon;Heo, Ye-Ji;Park, Jeong-Eun;Park, Sang-Jin;Kim, Hyun-Hee;No, Ci-Chul;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.4
    • /
    • pp.35-38
    • /
    • 2009
  • Flat-panel x-ray detectors using a phosphor and photoconductor material have been used for application in various medical modalities. In this study, the monte carlo simulation, optical and x-ray response characteristics were investigated in the conversion structure obtained by a columnar CsI:Na scintillation layer with a photosensitive amorphous selenium layer. Firstly, from the measurement of luminescent spectrum of CsI:Na and absorption spectrum of a-Se layer, the signal conversion characteristics are analysed. And also, the x-ray sensitivity is measured and compared with conventional a-Se($500{\mu}m$) as a function of electrical field. From the experimental result, the x-ray sensitivities of the CsI:Na($180{\mu}m$)/a-Se($30{\mu}m$) detector and the a-Se($500{\mu}m$) detector were $7.31nC/mR-cm^{2}$ and $3.95nC/mR-cm^{2}$at an electric field of $10V/{\mu}m$, respectively.

  • PDF

Usefulness of inverter type REX-650 R/F X-ray equipments (REX-650 RF 인버터장치의 성능평가)

  • Kim, Jung-Min;Oh, Jung-Hwan
    • Journal of radiological science and technology
    • /
    • v.26 no.1
    • /
    • pp.31-37
    • /
    • 2003
  • The conclusions after appraisal usefulness of korean 30 kHz inverter type X-ray equipments which are currently used in the clinics are like those followings. 1. The specific characters of mA, kVp, msec in the radiography keep very good accuracy and showed good waveform also under KS regulations. 2. The output of the X-ray equipment is showed 1.7 times higher than single-phase. 3. mA, kVp of the fluoroscopy and Sopt film exposure mA, kVp showed appropriated results under the regulations. 4. As we consider the conversion factor of image intensifier tube used for two years, it showed pretty high results, 310 at 75 kV, and knew that the conversion factor which followed by increasing kVp increased its computations like Kim's experimentation. Those X-ray equipment showed excellent results in the appraisal while those were operating so we think that those X-ray equipments will be substitute for expensive foreign equipment in korean domestic medical equipment in the future.

  • PDF

A Study on the Additional Radiation Exposure Dose of kV X-ray Based Image Guided Radiotherapy (kV X선 기반 영상유도방사선치료의 추가 피폭선량에 관한 연구)

  • Gha-Jung Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1157-1164
    • /
    • 2023
  • This study measures the additional dose for each treatment area using kV X-ray based OBI (On-Board Imager) and CBCT (Cone-Beam CT), which have excellent spatial resolution and contrast, and evaluates the adequacy and stability of radiation management aspects of IGRT. The subjects of the experiment were examined with OBI and CBCT attached to a linear accelerator (Clinac IX), and ring-shaped Halcyon CBCT under imaging conditions for each treatment area, and the dose at the center was measured using an ion chamber. OBI single fraction dose was measured as 0.77 mGy in the head area, 3.04 mGy in the chest area, and 7.19 mGy in the pelvic area. The absorbed doses from the two devices, Clinac IX CBCT and Halcyon CBCT, were measured to be similar in the pelvic area, at 70.04 mGy and 70.45 mGy. and in chest CBCT, the Clinac IX absorbed dose (70.05 mGy) was higher than the Halcyon absorbed dose (21.01 mGy). The absorbed dose to the head area was also higher than that of Clinac IX (9.08 mGy) and Halcyon (5.44 mGy). In kV X-ray-based IGRT, additional radiation exposure due to photoelectric absorption may affect the overall volume of the treatment area, and caution is required.

The Design and Fabrication of Conversion Layer for Application of Direct-Detection Type Flat Panel Detector (직접 검출형 평판 검출기 적용을 위한 변환층 설계 및 제작)

  • Noh, Si-Cheol;Kang, Sang-Sik;Jung, Bong-Jae;Choi, Il-Hong;Cho, Chang-Hoon;Heo, Ye-Ji;Yoon, Ju-Seon;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.1
    • /
    • pp.73-77
    • /
    • 2012
  • Recently, Interest to the photoconductor, which is used to flat form X-ray detector such as a-Se, $HgI_2$, PbO, CdTe, $PbI_2$ etc. is increasing. In this study, the film layer by using the photoconductive material with particle sedimentation was fabricated and evaluated. The quantization efficiency of the continuous X-ray with the 70 kVp energy bandwidth was analyzed by using the Monte Carlo simulation. With the results, the thickness of film with 64 % quantization efficiency was 180 ${\mu}m$ which is similar to the efficiency of 500 ${\mu}m$ a-Se film. And $HIg_2$ film has the high quantization efficiency of 74 % on 240 ${\mu}m$ thickness. The electrical characteristics of the 239 ${\mu}m$ $Hgl_2$ films produced by particle sedimentation were shown as very low dark current(under 10 $pA/mm^2$), and high sensitivity(19.8 mC/mR-sec) with 1 $V/{\mu}m$ input voltage. The SNR, which is influence to the contrast of X-ray image, was shown highly as 3,125 in low driving voltage on 0.8 $V/{\mu}m$. With the results of this study, the development of the low-cost, high-performance image detector with film could be possible by replacing the film produced by particle sedimentation instead to a-Se detector.

The Fabrication and Property Evaluation of Poly-crystalline CdTe based Photon Counting X-ray Sensor (다결정 CdTe 기반의 광계수형 X선 센서 제작 및 특성평가)

  • Kang, Sang Sik;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.439-443
    • /
    • 2015
  • An electrical signals of a conventional radiation medical imaging sensor are obtained by charge integration method. In this study, the polycrystalline cadmium telluride(p-CdTe) film was fabricated by a thermal evaporation method for the photon counting sensor development with excellent resolution in low exposure dose. From the fabricated p-CdTe sensor, the physical properties(SEM, XRD) and the electrical properties(leakage current, x-ray sensitivity, SNR) were evaluated. As a result, the leakage current of below $5nA/cm^2$ and $7{\mu}C/cm^2-R$ of the X-ray sensitivity were showed in below $1V/{\mu}m$. In addition, the signal to noise ratio showed the values of above 5000 at operating voltage.