• Title/Summary/Keyword: k-wheel

Search Result 1,703, Processing Time 0.027 seconds

A Study on an Analysis and Design of the Internal Structure of Heumgyeonggak-nu

  • Kim, Sang Hyuk;Yun, Yong-Hyun;Ham, Seon Young;Mihn, Byeong-Hee;Ki, Ho-Chul;Yoon, Myung-Kyoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.171-182
    • /
    • 2017
  • In this study, the internal structure of a Heumgyeonggak-nu (欽敬閣漏) was designed, and the power transmission mechanism was analyzed. Heumgyeonggak-nu is an automated water clock from the Joseon Dynasty that was installed within Heumgyeonggak (欽敬閣), and it was manufactured in the $20^{th}$ year of the reign of King Sejong (1438). As descriptions of Heumgyeonggak-nu in ancient literature have mostly focused on its external shape, the study of its internal mechanism has been difficult. A detailed analysis of the literature record on Heumgyeonggak-nu (e.g., The Annals of the Joseon Dynasty) indicates that Heumgyeonggak-nu had a three-stage water clock, included a waterfall or tilting vessel (欹器) using the overflowed water, and displayed the time using a ball. In this study, the Cheonhyeong apparatus, water wheel, scoop, and various mechanism wheels were designed so that 16 fixed-type scoops could operate at a constant speed for the water wheel with a diameter of 100 cm. As the scoop can contain 1.25 l of water and the water wheel rotates 61 times a day, a total of 1,220 l of water is required. Also, the power gear wheel was designed as a 366-tooth gear, which supported the operation of the time signal gear wheel. To implement the movement of stars on the celestial sphere, the rotation ratio of the celestial gear wheel to the diurnal motion gear ring was set to 366:365. In addition, to operate the sun movement apparatus on the ecliptic, a gear device was installed on the South Pole axis. It is expected that the results of this study can be used for the manufacture and restoration of the operation model of Heumgyeonggak-nu.

Analysis of Vehicle Dynamic Performance after Wheel Reprofiling (차륜 전삭에 따른 차량 동적성능 분석)

  • Hur, Hyunmoo;Ahn, Dahoon;Youn, Suksoon;Choi, Yongwoon
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.5
    • /
    • pp.565-575
    • /
    • 2016
  • Wheel reprofiling is frequently conducted to remove faults such as flange wear, flat areas, and cracks that occur in railway vehicle operation. We analyzed the dynamic performances of a vehicle before and after wheel reprofiling to grasp the influence of reprofiling on the dynamic behavior of the vehicle. We measured the wheel profile of the test vehicle and conducted a running test to analyze the vibration and comfort characteristics of the test vehicle. The result of the test indicated that vibration of the test vehicle after wheel reprofiling was reduced compared to that before wheel reprofiling. And, comfort level of the test vehicle after wheel reprofiling was improved by about 3dB laterally and vertically. Consequently, the positive effect of wheel reprofiling on the dynamic performance of vehicle was verified.

Stress Distribution of Tilting Vehicles Wheel-set by Interaction Force Between Wheel and Rail (차륜과 레일간의 상호 작용력에 의한 틸팅차량 윤축의 응력분포)

  • Ham Y.S.;Oh T.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.363-364
    • /
    • 2006
  • The important factor to evaluate the running safety of a railway vehicle would be the interaction force between wheel and rail(derailment coefficient), for which is one of important factors to check the running safety of a railway vehicle that may cause a tragic accident. In this paper, when interaction force between wheel and rail happens to wheel-set of tilting vehicles, it analyzes stress distribution and verified safety.

  • PDF

Computer simulation for dynamic wheel loads of heavy vehicles

  • Kawatani, Mitsuo;Kim, Chul-Woo
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.409-428
    • /
    • 2001
  • The characteristics of dynamic wheel loads of heavy vehicles running on bridge and rigid surface are investigated by using three-dimensional analytical model. The simulated dynamic wheel loads of vehicles are compared with the experimental results carried out by Road-Vehicles Research Institute of Netherlands Organization for Applied Scientific Research (TNO) to verify the validity of the analytical model. Also another comparison of the analytical result with the experimental one for Umeda Entrance Bridge of Hanshin Expressway in Osaka, Japan, is presented in this study. The agreement between the analytical and experimental results is satisfactory and encouraging the use of the analytical model in practice. Parametric study shows that the dynamic increment factor (DIF) of the bridge and RMS values of dynamic wheel loads are fluctuated according to vehicle speeds and vehicle types as well as roadway roughness conditions. Moreover, there exist strong dominant frequency resemblance between bounce motion of vehicle and bridge response as well as those relations between RMS values of dynamic wheel loads and dynamic increment factor (DIF) of bridges.

Estimation of Fatigue Damage Due to Rolling Contact in a Railway Wheel Using FEM Analysis (유한요소법을 이용한 철도 차륜에서 구름 접촉으로 인한 피로손상 평가)

  • Lee, Sang-Hoon;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • Fatigue damage on the train wheel surface was estimated by considering the effect of friction coefficient of rolling on the contact surface between the wheel and rail during operation. From FEM analys, the maximum Tresca stress was 550.7 MPa at a depth of 2.07 mm under the maximum contact pressure ($P_{max}$ = 894.3 MPa) between wheel and rail. The maximum stress continued to increase along with the increase in the frictional coefficient. The fatigue initiation lifetime of the wheel by the rolling contact was predicted using the Smith-Watson-Topper (SWT) equation and the maximum principal strain equation (${\varepsilon}$-N).

Evaluation of Field Calibration Test on Rail for Train Wheel Force Measurement

  • Sim, Hyoung-Bo;Yeo, Inho
    • International Journal of Railway
    • /
    • v.8 no.1
    • /
    • pp.1-4
    • /
    • 2015
  • An accurate measurement of the train-track interaction forces is important for track performance evaluation. In the field calibration test as a wheel load measurement process, the calibration system creates a different boundary condition in comparison with that in the train wheel passage. This study aims to evaluate a reliability of the field calibration test in the process of wheel load measurement. Finite element models were developed to compare the deformed shapes, bending moment and shear force profiles on the rail section. The analysis results revealed that the deformed shapes and their associated bending moment profiles on the rail are significantly different in two numerical simulations of the calibration test and the train wheel load passage. However, the shear stress profile on the rail section of the strain gauge installation in the field was almost identical, which may imply that the current calibration test is sufficiently reliable.

Evaluation of Residual Stress for Freight Car Wheel due to Wear and Brake Application (마모와 제동에 의한 화차륜의 잔류응력 변화)

  • Kwon, Seok Jin;Seo, Jung Won;Kim, Min Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.529-534
    • /
    • 2016
  • During the past few years, several incidents of freight car wheel failure during operation have occurred due to fatigue crack and overheating from braking. Tensile residual stress on the wheel tread creates an environment conducive to the formation of thermal cracks that may threaten the safety of train operations. It is important to investigate the residual stress on wheels in order to prevent derailment. In the present paper, the residual stress on wheels is measured using the x-ray diffraction system and the residual stress is analyzed using FEM. The result shows that the residual stress on the wheel rim is lower than that on the wheel tread center and the stress on over-braked wheels changes from compression residual stress to tensile residual stress.

Wheel/Rail Contact Analysis with Consideration of Friction and Torque (마찰과 토크를 고려한 차륜/레일 접촉 해석)

  • Song, Ki-Seok;Han, Seung-Hee;Choi, Yeon-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.14-18
    • /
    • 2014
  • Wheel/rail contact is a significant problem in railway dynamics. In this paper, the wheel/rail contact is examined analytically and numerically as a contact problem between two cylinders where torque and friction have effect. Furthermore, the contact of a real wheel and rail is investigated numerically where the normal and shear force act. This study demonstrates that the wheel/rail contact is a process that generates traction force through creep where rolling and sliding occurs simultaneously depending on the shape of the wheel and rail, and the friction coefficient between them.

In-process Truing of Metal-bonded Diamond Wheels for Electrolytic In-process Dressing (ELID) Grinding

  • Saleh, Tanveer;Biswas, Indraneel;Lim, Han-Seok;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.3-6
    • /
    • 2008
  • Electrolytic in-process dressing (ELID) grinding is a new technique for achieving a nanoscale surface finish on hard and brittle materials such as optical glass and ceramics. This process applies an electrochemical dressing on the metal-bonded diamond wheels to ensure constant protrusion of sharp cutting grits throughout the grinding cycle. In conventional ELID grinding, a constant source of pulsed DC power is supplied to the ELID cell, but a feedback mechanism is necessary to control the dressing power and obtain better performance. In this study, we propose a new closed-loop wheel dressing technique for grinding wheel truing that addresses the efficient correction of eccentric wheel rotation and the nonuniformity in the grinding wheel profile. The technique relies on an iterative control algorithm for the ELID power supply. An inductive sensor is used to measure the wheel profile based on the gap between the sensor head and wheel edge, and this is used as the feedback signal to control the pulse width of the power supply. We discuss the detailed mathematical design of the control algorithm and provide simulation results that were confirmed experimentally.

Performance Evaluation of Wheel Detection Sensor Using an Inductive Proximity Sensor for The High Speed Railway (자기유도형 근접센서를 활용한 고속철도용 차륜검지센서 성능 평가)

  • Lee, Kwang-Hee;Lee, Jong-Hyun;Suh, Ki-Bum;Yoon, Suk-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.895-901
    • /
    • 2016
  • Nowadays, the axle counter has been developed to the wide range of the track circuit blocks as well as the wheel detection device. The axle counter, as becoming an important device for the high speed railway, must be guaranteed in accordance with the safety. With considering the safety and the high speed, performance evaluation a wheel detection sensor is described in this paper. To increase the safety, digital proximity sensor instead of analog is employed in the wheel detection sensor. Therefor the wheel detection sensor can minimize noisy signals caused by the harsh railway environments. And, to meet the high speed railway requirements, the performance of the wheel detection sensor is also successfully verified using the speed simulator at the velocity 500Km/h.