• Title/Summary/Keyword: k-thinning algorithm

Search Result 52, Processing Time 0.035 seconds

An Implementation of a Thinning Algorithm using FPGA (세선화 알고리즘의 FPGA 구현)

  • Jung, Seung-Min;Yeo, Hyeop-Goo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.719-721
    • /
    • 2013
  • A thinning stage of fingerprint algorithm occupies 39% cycle of microprocessor system for identification processing of image from fingerprint sensor. Hardware block processing is more effective than software one in speed and power consumption, because a thinning algorithm is iteration of simple instructions without a transcendental function. This paper describes an effective hardware scheme for thinning stage processing using Verilog-HDL in $64{\times}64$ Pixel Array. The hardware scheme is designed and simulated in RTL. The logic is also synthesized by XST in FPGA environment and tested. Experimental results show the performance of the proposed scheme and possibility of application for a soft microprocessor and thinning processor embedded fingerprint SoC.

  • PDF

SLAM of a Mobile Robot using Thinning-based Topological Information

  • Lee, Yong-Ju;Kwon, Tae-Bum;Song, Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.577-583
    • /
    • 2007
  • Simultaneous Localization and Mapping (SLAM) is the process of building a map of an unknown environment and simultaneously localizing a robot relative to this map. SLAM is very important for the indoor navigation of a mobile robot and much research has been conducted on this subject. Although feature-based SLAM using an Extended Kalman Filter (EKF) is widely used, it has shortcomings in that the computational complexity grows in proportion to the square of the number of features. This prohibits EKF-SLAM from operating in real time and makes it unfeasible in large environments where many features exist. This paper presents an algorithm which reduces the computational complexity of EKF-SLAM by using topological information (TI) extracted through a thinning process. The global map can be divided into local areas using the nodes of a thinning-based topological map. SLAM is then performed in local instead of global areas. Experimental results for various environments show that the performance and efficiency of the proposed EKF-SLAM/TI scheme are excellent.

FUZZY SUPPORT VECTOR REGRESSION MODEL FOR THE CALCULATION OF THE COLLAPSE MOMENT FOR WALL-THINNED PIPES

  • Yang, Heon-Young;Na, Man-Gyun;Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.607-614
    • /
    • 2008
  • Since pipes with wall-thinning defects can collapse at fluid pressure that are lower than expected, the collapse moment of wall-thinned pipes should be determined accurately for the safety of nuclear power plants. Wall-thinning defects, which are mostly found in pipe bends and elbows, are mainly caused by flow-accelerated corrosion. This lowers the failure pressure, load-carrying capacity, deformation ability, and fatigue resistance of pipe bends and elbows. This paper offers a support vector regression (SVR) model further enhanced with a fuzzy algorithm for calculation of the collapse moment and for evaluating the integrity of wall-thinned piping systems. The fuzzy support vector regression (FSVR) model is applied to numerical data obtained from finite element analyses of piping systems with wall-thinning defects. In this paper, three FSVR models are developed, respectively, for three data sets divided into extrados, intrados, and crown defects corresponding to three different defect locations. It is known that FSVR models are sufficiently accurate for an integrity evaluation of piping systems from laser or ultrasonic measurements of wall-thinning defects.

Thinning Based Global Topological Map Building with Application to Localization (세선화 기법을 이용한 전역 토폴로지컬 지도의 작성 및 위치추적)

  • Choi, Chang-Hyuk;Song, Jae-Bok;Chung, Woo-Jin;Kim, Mun-Sang
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.822-827
    • /
    • 2003
  • Topological maps have drawn more attention recently because they are compact, provide natural interfaces, and are applicable to path planning easily. To build a topological map incrementally, Voronoi diagram was used by many researchers. The Voronoi diagram, however, has difficulty in applying to arbitrarily shaped objects and needs long computation time. In this paper, we present a new method for global topological map from the local topological maps incrementally. The local topological maps are created through a thinning algorithm from a local grid map, which is built based on the sensor information at the current robot position. A thinning method requires simpler computation than the Voronoi diagram. Localization based on the topological map is usually difficult, but additional nodes created by the thinning method can improve localization performance. A series of experiments have been conducted using a two-wheeled mobile robot equipped with a laser scanner. It is shown that the proposed scheme can create satisfactory topological maps.

  • PDF

A Hardware Implementation of Fingerprint Identification Thinning Algorithm (지문인식 세선화 알고리즘의 하드웨어 구현)

  • Woo, Yun-Hee;Ha, Mi-Na;Jung, Seung-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.493-496
    • /
    • 2010
  • This paper proposes an effective hardware scheme for thinning stage processing of a fingerprint identification algorithm based on minutiae with 40% cycle occupation of 32-bit RISC microprocessor. The thinning step is needed to be processed by hardware block, because it is performed repeatedly by processing the same operation using an image window masking method. It can reduce the burden of the system and improve speed. The hardware is implemented by HDL and simulated. The result is compared with a conventional one.

  • PDF

Analysis of Optimal Thinning Prescriptions for a Cryptomeria japonica Stand Using Dynamic Programming (동적계획법 적용에 의한 삼나무 임분의 간벌시업체계 분석)

  • Han, Hee;Kwon, Kibeom;Chung, Hyejean;Seol, Ara;Chung, Joosang
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.4
    • /
    • pp.649-656
    • /
    • 2015
  • The objective of this study was to analyze the optimal thinning regimes for timber or carbon managements in Cryptomeria japonica stands of Hannam Experimental Forest, Korea Forest Research Institute. In solving the problem, PATH algorithm, developed by Paderes and Brodie, was used as the decision-making tool and the individual-tree/distance-free stand growth simulator for the species, developed by Kwon et al., was used to predict the stand growth associated with density control by thinning regimes and mortality. The results of this study indicate that the timber management for maximum net present value (NPV) needs less number of but higher intensity thinnings than the carbon management for maximum carbon absorption does. In case of carbon management, the amount of carbon absorption is bigger than that of timber management by about 6% but NPV is reduced by about 3.2%. On the other hand, intensive forest managements with thinning regimes promotes net income and carbon absorption by about 60% compared with those of the do-nothing option.

Improved Exploration Algorithm Using Reliability Index of Thinning Based Topological Nodes

  • Kwon, Tae-Bum;Song, Jae-Bok;Lee, Soo-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.250-255
    • /
    • 2005
  • For navigation of a service robot, mapping and localization are very important. To estimate the robot pose, the map of the environment is required and it can be built by exploration or SLAM. Exploration is the fundamental task of guiding a robot autonomously during mapping such that it covers the entire environment with its sensors. In this paper, an efficient exploration scheme based on the position probability of the end nodes of a topological map is proposed. In this scheme, a topological map is constructed in real time using the thinning-based approach. The robot then updates the position probability of each end node maintaining its position at the current location based on the Bayesian update rule using the range data. From this probability, the robot can determine whether or not it needs to visit the specific end node to examine the environment around this node. Various experiments show that the proposed exploration scheme can perform exploration more efficiently than other schemes in that, in most cases, exploration for the entire environment can be completed without directly visiting everywhere in the environment.

  • PDF

Collapse moment estimation for wall-thinned pipe bends and elbows using deep fuzzy neural networks

  • Yun, So Hun;Koo, Young Do;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2678-2685
    • /
    • 2020
  • The pipe bends and elbows in nuclear power plants (NPPs) are vulnerable to degradation mechanisms and can cause wall-thinning defects. As it is difficult to detect both the defects generated inside the wall-thinned pipes and the preliminary signs, the wall-thinning defects should be accurately estimated to maintain the integrity of NPPs. This paper proposes a deep fuzzy neural network (DFNN) method and estimates the collapse moment of wall-thinned pipe bends and elbows. The proposed model has a simplified structure in which the fuzzy neural network module is repeatedly connected, and it is optimized using the least squares method and genetic algorithm. Numerical data obtained through simulations on the pipe bends and elbows with extrados, intrados, and crown defects were applied to the DFNN model to estimate the collapse moment. The acquired databases were divided into training, optimization, and test datasets and used to train and verify the estimation model. Consequently, the relative root mean square (RMS) errors of the estimated collapse moment at all the defect locations were within 0.25% for the test data. Such a low RMS error indicates that the DFNN model is accurate in estimating the collapse moment for wall-thinned pipe bends and elbows.

study on Optimization Thinning area Lane Detection Algorithm Using Kalman Filter (칼만 필터를 이용한 최적의 세선화 영역 차선인식 알고리즘에 관한연구)

  • Lee, Jun-Sup;Cheong, Cha-Keon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1031-1032
    • /
    • 2008
  • To process the dynamic images in real time, there could be many constraints on the hardware. Kalman Filter has been used to estimate motion information and use the information in predicting the appearance of targets in succeeding frames. This paper suggests algorithm about lane recognition using Kalman Filter which is one of operations research technique.

  • PDF

Seam Carving based Occlusion Region Compensation Algorithm (심카빙 기반 가려짐 영역 보상 기법)

  • An, Jae-Woo;Yoo, Ji-Sang
    • Journal of Broadcast Engineering
    • /
    • v.16 no.4
    • /
    • pp.573-583
    • /
    • 2011
  • In this paper, we propose an occlusion compensation algorithm which is used for virtual view generation. In general, since occlusion region is recovered from neighboring pixels by taking the mean value or median value of neighbor pixels, the visual characteristics of a given image are not considered and consequently the accuracy of the compensated occlusion regions is not guaranteed. To solve these problem, we propose an algorithm that considers primary visual characteristics of a given image to compensate the occluded regions by using seam carving algorithm. In the proposed algorithm, we first use Sobel mask to obtain the edge map of a given image and then make it binary digit 0 or 1 and finally thinning process follows. Then, the energy patterns of original and thinned edge map obtained by the modified seam carving method are used to compensate the occlusion regions. Through experiments with many test images, we verify that the proposed algorithm performed better than conventional algorithms.