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Abstract: Simultaneous Localization and Mapping (SLAM) is the process of building a map of
an unknown environment and simultaneously localizing a robot relative to this map. SLAM is
very important for the indoor navigation of a mobile robot and much research has been
conducted on this subject. Although feature-based SLAM using an Extended Kalman Filter
(EKF) is widely used, it has shortcomings in that the computational complexity grows in
proportion to the square of the number of features. This prohibits EKF-SLLAM from operating in
real time and makes it unfeasible in large environments where many features exist. This paper
presents an algorithm which reduces the computational complexity of EKF-SLAM by using
topological information (TT) extracted through a thinning process. The global map can be divided
into local areas using the nodes of a thinning-based topological map. SLAM is then performed in
local instead of global areas. Experimental results for various environments show that the
performance and efficiency of the proposed EKF-SLAM/TI scheme are excellent.
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1. INTRODUCTION

A mobile robot can build a map of an unknown
environment and localize itself with respect to this
map through on-board sensors using the SLAM
(Simultaneous Localization and Mapping) technique.
SLAM represents one of the most fundamental
problems in the field of mobile robotics and much
research has already been conducted, but a complete
solution has not yet been presented. This is partly due
to the fact that the estimation of robot pose is closely
correlated to map building. That is, the accurate
estimation of the robot pose depends heavily on an
accurate map and vice versa.

Among the several SLAM algorithms, the EKF
(Extended Kalman Filter)-based SLAM [1,2] is the
scheme most widely used. The EKF is the optimal
sensor fusion method which has been used for a long
time. The odometeric error caused by an encoder can
be compensated by an EKF, which fuses different
types of sensor data with weights proportional to the
uncertainty of each sensor. In many cases the EKF-
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based SLAM requires artificially installed features,
which causes difficulty in actual implementation.
Moreover, the computational complexity involved in
an EKF increases as the number of features increases.

Recently, FastSLAM, which combines a particle
filter with an EKF, was proposed [3]. The particle
filter is used to estimate the robot path and the EKF is
employed to update the probability of the samples,
which represent the candidates for the robot pose. It
can very closely model the actual motion of a robot.
FastSLAM uses as many low-dimensional EKFs as
the number of samples and it adopts a kd-tree to
reduce the computational complexity. However, it
requires a large amount of unnecessary memory to
represent the covariance and expectations of the robot
pose and features. In addition, since multiple maps are
converged after loop-closing, it is difficult to
implement FastSLAM on a real-time basis.

The compressed filter algorithm was proposed to
restrict the computational complexity and improve
performance [4]. In the compressed filter, a global
map is decomposed into several sub-maps. The robot
uses the features in the sub-map that are located in the
vicinity of the robot to reduce the computational
complexity to O(N.%), where N, is the number of
features in the sub-maps.

Recursive Unscented Kalman Filtering was
proposed as an efficient method to deal with a large
number of landmarks [5]. In this scheme, the robot
pose and landmark positions are represented by their
marginal  Gaussian  probability and updated
individually, which reduces the filtering dimension-
ality and the computation requirements.

As the number of features increases, the computa-
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tional burden of matching and updating features also
increases, which prevents the SLAM from being
conducted in real time. If the robot knows which
features are nearby, it is unnecessary to update the
information of all the features that are far away from
the robot and thus are not used to update the robot
pose. Therefore, the EKF can be carried out efficiently
if it can identify the features near the robot. This paper
proposes an algorithm that can find the local area in
which matching and updating the features are
conducted for the EKF-based SLAM. This local area
can be searched for by the topological information
which can represent the environment in the
neighborhood of the robot. The topological infor-
mation, which is composed of topological edges and
nodes, is extracted through a thinning algorithm.

The remainder of this paper is organized as follows.
Section 2 presents a brief introduction of the EKF-
based SLAM. Section 3 discusses how to obtain the
topological information using a thinning algorithm.
Section 4 describes the way of finding the local
features near the robot. Finally, Sections 5 and 6
present the experimental results and conclusions.

2. EKF-BASED SLAM

The EKF which is based on Bayes filtering [6], is
used to handle the nonlinearities involved in the
motion of a mobile robot. The state vector is defined
as follows:

X =[X;, X}, X1, 1, (1)

where X, is the robot pose given by (er, Wy,, WG,) and
X is the position of the i-th feature denoted by ",
"a), as shown in Fig. 1. The superscript W represents
the quantity written in the world frame. A robot
estimates its pose by continuous prediction and update
based on the EKF algorithm.

2.1. Update
If the robot observes a feature, it compares this
feature to those in the state vector X. If the feature
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Fig. 1. Robot pose and feature position relative to the
world frame.

coincides with one of the stored features, then an
update stage is conducted. At the update stage, the
posteriors of the states are estimated by incorporating
the predicted and actual observations.

The predicted observations i, is defined by
Z,=[2,;|1<i<n,), )

where z,; is computed based on the prior state

vector at time ¢, f(,', and n, is the number of

predicted observations (e.g., line feature i in Fig. 2).
For example, the predicted observation of line feature
i is computed as follows:

5 N
z,;=h;(x,) = R~
F

i

Wai _ Wer
Wy — ("% -cos "o, + 73, -sin V)
3)
The actual observation Z, obtained by the range
sensor is defined as

Zt=[zt,j[1£i£na], 4)

where n, is the number of actual observations (e.g.,
line feature j in Fig. 2) and the observation for line
feature j is given by
R__R_T
[Ca o T j]

, (%)

Zl,j =

where Raj is the angle of the line normal to feature line
j relative to the robot frame, and Rrj is the distance to
the feature line from the robot center.

By using the difference between the predicted and

the actual observations, the state X, and its
covariance P, are updated as follows:

K, = Pt_HzT (HtPt_HZw +R, )_1’ (6)

Fig. 2. Representation of features in the world and
robot frames.
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X, =X; +K,(Z, - Z,), (7)

P, = (I~K,H,)P,", (8)
oh(X;)

H, = R 9

‘=X, ©)

where K represents the Kalman gain, and H is the
Jacobian matrix of the sensor model with respect to
the state vector.

2.2. Prediction
At the prediction stage, the prior of the state vector,

X;,;, and the prior of its covariance matrix, P,

at time #+1 are computed from the state vector 5(“

its covariance matrix P, and the encoder reading u; as
follows:

X =f(X,u,0)+w,, (10)
P =FPF + F,QF!, (11)
of of
F ==, F =, 12
X aXt u aut ( )

where w, represents the process noise with zero mean
and the covariance Q,. The matrices Fy and F, are the
Jacobian matrices of the nonlinear motion model f(+)
with respect to the state and the input, respectively.
Note that the superscript ‘-’ in (10) and (11) indicates
the prior variables before the observation at time 7+1.

3. THINNING-BASED TOPOLOGICAL
INFORMATION

Topological information is an abstraction of the
environment in terms of the nodes representing
discrete places and the edges connecting them
together. Topological information can be generated by
various methods including a thinning method which is
used in this research [7]. The thinning method is one
of the popular image processing algorithms used to
detect the skeletons of images. Fig. 3 illustrates the
concept of thinning. The objects on the left can be
adequately described by the structure composed of
connected lines (i.e., the ‘T’ shape drawn with thin
lines on the right). Note that the connectivity of the
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Fig. 3. Extraction of topological edges and nodes by
thinning algorithm.
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Fig. 4. Construction of a thinning-based topological
map (TTM) for a given environment (Simula-
tions).

structure is still preserved even with thin lines. In the
case of mobile robots, the connected lines can be used
as paths by which a robot can navigate without
colliding into other objects.

The thinning process is applied to the free space
shown in Fig. 4. Then, this free space is continually
contracted from both the outside of the objects and the
inside of the wall boundary. This thinning process is
repeated until a skeleton corresponding to the thinnest
line for the free space is extracted. After the edges are
extracted through the thinning process, nodes can be
extracted, as shown in Fig. 3. An end node
corresponding to the end of each edge represents the
dead end of the environment (e.g., dead end of the
corridor). A branch node where more than three edges
meet represents the junction (e.g., intersection of
corridors).

The thinning-based topological map (TTM) is
constructed as follows. The robot collects the range
data by scanning the environment using a laser
rangefinder. Since the scanning rate is about 5Hz,
each cell in the occupancy grids is likely to be
scanned several times. The occupancy probability for
each cell is then updated based on the Bayesian
update formula. This probabilistic approach to
building local occupancy grids enhances the
confidence of the underlying grid map for a local
topological map. At each sampling instant, based on

Occupancy grid Edge extraction by Topological map with
map thinning process nodes and edges

(a) (b) ©
Fig. 5. Example of thinning-based topological map.



580 Yong-Ju Lee, Tae-Bum Kwon, and Jae-Bok Song

the range data, the local grid map and the subsequent
local topological map is built, as shown in Fig. 5. The
local topological map even for the same space is
constantly changing as the underlying grid map is
updated. The TTM is built in real time.

4. SLAM USING TOPOLOGICAL
INFORMATION

In order to compensate for the robot pose, the robot
should know the features that are being currently
observed by its sensor. The process of relating the
observed features to the features stored in the map is
called data association [8]. Correct data association is
crucial to the navigation of a mobile robot as it allows
the robot to determine its pose with respect to the
feature map. This paper proposes a SLAM with
topological information (SLAM/TI) that can perform
efficient data association using topological infor-
mation.

Topological information extracted by a thinning
algorithm covers the environment reasonably well.
Information on the features that are near a certain
node is stored in that node. If the topological
information is used, the efficient data association can
be achieved because all features do not have to be
compared with the observation for matching. Fig. 6(a)
shows a hybrid grid/topological map of an indoor
environment. Fig. 6(b) represents the topological
nodes and their corresponding features. The arrows
indicate the features related to each node. In this paper,
the least-square method is employed to extract line
features from the raw sensor data [9].

First, the robot finds the nearest node. If more than
two neighboring nodes are detected, the node that can
be reached faster with the current orientation of the
robot is selected. Then, the robot finds all nodes along
the edges connected to this selected node. At this time
the nodes behind the robot are not considered because
they are beyond the limit of visibility. In this way the
robot detects all nodes that are placed near the robot.
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Fig. 6. Topological representation of the environment;
(a) hybrid grid/topological map, and (b)
relationships between topological nodes and
features.

The robot registers the features stored at the detected
nodes on a temporary database. Since only the
neighboring features are considered, the number of
features stored in this database is not large. Hence this
proposed approach can reduce the operation time of
data association based on feature matching.

Fig. 7 illustrates an example of the process. At the
initial position, the robot detects node 6 as the nearest
node. Then the robot detects the nodes 2, 3, and 5,
which are all connected to node 6 through the edges,
and adds these nodes to the search list. The robot uses
the features contained at these four nodes (i.c., 6, 2, 3,
and 5) for data association.

Fig. 8 depicts the local area generated by the node
search. The features in the dotted region, instead of all
the features, are used to compensate for the robot pose.
After the features for comparison are determined, the
observations are associated with the previously known
features by using a Chi-squared test given by

2 Tyr—1
X z2vKi vy, (13)
where v; =z, ;—%;; is the innovation that is the

difference between the actual observation of feature j,
Z;, and the predicted observation of feature i, it,l-.

The innovation covariance is K, =H,P, H! +R,.
The value of #* can be obtained from a Chi-square
table. Because the observation has 2 degrees of
freedom (i.e., » and o), ,1; is 5.99 for a confidence
level of 95%. If (13) is satisfied with 7= 5.99, the
predicted feature is considered to coincide with the

Fig. 7. Example of selection of nodes.
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Fig. 8. Local area selected by topological nodes.
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actual features. After finding the features in its vicinity,
the robot estimates its pose based on the information
on the detected features.

The features which are not associated with the
observation are not likely to offer much information in
estimation of the robot pose. In other words, the
features chosen by the topological nodes are sufficient
to maintain the accuracy for the update of the robot
pose. The features that are not chosen by the
topological nodes can be removed without sacrificing
accuracy, which greatly decreases the computational
load.

5. EXPERIMENTAL RESULTS

The Pioneer-3AT robot equipped with a SICK
LMS200 laser rangefinder was wused for the
experiments. The robot moves at an average speed of
0.2m/s. Experiments were conducted in the
environments of a living room and an office. The area
of the environment was 9.5m x 7.5m with several
pieces of furniture, as shown in Fig. 9(a). Also,
experiments were also conducted for the floor of a
building which was 40m x 10m, as shown in Fig. 9(b).
All environments were modeled by a grid map having
a cell size of 10cm x 10cm.

5.1. Maps constructed by SLAM/TI

A grid map constructed by the proposed SLAM/TI
for an office and a building floor are shown in Figs.
10(b) and 11(b), respectively. These grid maps are
used to certify that the proposed SLAM/TI scheme
does not fail in indoor environments. These figures
show that the environment can be modeled using the
SLAM/TI  algorithm  without distorting the
environments.

Fig. 12(a) shows the path of the robot and the line
features for the environment of a building floor. In Fig.
12(a), the solid line denotes the robot path obtained
only by the odometeric data and the dashed line
represents the estimated robot path based on the
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Fig. 9. Experimental environments; (a) an office, and
(b) a building floor.
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Fig. 10. Environment of office; (a) CAD data, and (b)
local grid map constructed by EKF-SLAM/
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Fig. 11. Environment of building floor; (a) CAD data,
and (b) global grid map constructed by EKF-

SLAM/TL.
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Fig. 12. Estimates of robot path; (a) conventional
EKF-SLAM, and (b) the proposed EKF-
SLAM/TL
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conventional EKF-SLAM algorithm. During the
navigation from the start to the final position, the
robot extracted 33 line features in total. On the other
hand, Fig. 12(b) is the path estimated by the EKF-
SLAM/TI. In order to update the current robot pose,
the EKF-SLAM/TI requires only 7 line features
denoted as thick lines in Fig. 12(b), whereas the EKF-
SLAM should use more than 25 line features
(assuming the same robot pose with Fig. 12(b)), most
of which has little effect on the update of the current
pose. The robot paths for the two methods are almost
identical. Furthermore, as shown in Figs. 10 and 11,
the maps constructed using the EKF-SLAM/TI are
similar to the accurate map drawn using the CAD data.

5.2. Processing time

Fig. 13 compares the processing time of the
conventional EKF-SLLAM with that of the proposed
EKF-SLAM/TI. As shown in the figure, the
processing time of the EKF-SLAM increases almost
linearly with the number of features. Moreover, its
computation load usually increases rapidly as the
number of features exceeds about 100. Therefore, the
EKF-SLAM involving a large number of features
cannot be successfully operated in real-time. However,
the EKF-SLAM/TI shows nearly a constant
processing time (in this case, 30-40msec) regardless
of the number of features because this scheme uses
only the features that are located near the current
robot position. This means that the EKF-SLAM/TI
can conduct the mapping and localization of a mobile
robot in real-time even for environments with a lot of
features.

Fig. 14 shows the process of building a map of a
large environment by applying the EKF-SLAM/TIL.
The environment shown in Fig. 14 is a 70m x 10 m
building floor consisting of many features. The robot
extracted 88 features as it moved at a speed of
0.2m/sec for 20 minutes. As shown in Fig. 13, the
EKF-SLAM/TI can simultaneously build a map and
localize itself relative to the map in real time, which

Fig. 13. Processing time of EKF-SLAM (solid line)
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Fig. 14. Process of building a map using the EKF-
SLAM/TL

cannot be achieved with the conventional EKF-SLAM.
In Fig. 14, the left column represents the global grid
maps and the right column the local grid maps of 10m
x 10m. The capital letters of Fig. 14 indicate the
corresponding robot pose. In the experiments, the
errors of the estimated robot pose were about +20cm
and £5°.

6. CONCLUSIONS

This paper proposes an EKF-SLAM/TI scheme that
exploits the topological information based on a
thinning process to improve the efficiency of
conventional EKF-SLAM. The SLAM/TI was verified
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various experiments. From this research, the

following conclusions have been drawn.

1.

(1]

(2]

B3]

(4]

[5]

[6]
(7]

The EKF-SLAM/TI can detect only the features
needed to update the robot, which leads to a
reduction in the computational burden. Therefore,
mapping of a large environment can be conducted
in real-time.

. The accuracy of the EKF-SLAM/TI is comparable

to that of the conventional EKF-SLAM that
attempts to match all the features at the cost of an
increase in computational time.
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