• Title/Summary/Keyword: k-space trajectory

Search Result 250, Processing Time 0.037 seconds

Usefulness analysis of radial non-cartesian trajectory in the high-resolution MRA (고해상도 MRA 시 방사형 비직각좌표계 k-space 주사방식의 유용성 분석)

  • Lee, Ho-Beom;Choi, Kwan-Woo;Son, Soon-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6284-6289
    • /
    • 2013
  • With the application of k-space trajectory in a different manner and analyzing the influence of noise and its direction, this study was conducted to obtain high-quality images with minimal influence of noise during an MRI examination for cerebrovascular disease, which has a low signal for imaging. To evaluate influence of the noise of different k-space trajectories, a linear Cartesian coordination trajectory and non-Cartesian coordination trajectory were applied to 38 people who had received a high-resolution MRI examination for the early detection of cerebrovascular disease. As a result, the non-Cartesian coordination trajectory showed a 43.32% lower signal of lumens in the internal carotid artery than a linear Cartesian coordination trajectory, and the noise level was also 50.19% lower in a non-Cartesian coordination trajectory. This result shows that noise occurs less in a non-Cartesian coordination trajectory than a linear Cartesian coordination trajectory, and a non-Cartesian coordination trajectory is more effective in low-signal and low-resolution MRI examination. Therefore, when performing high-resolution MRI examination with a low-signal cerebrovascular system, the use of non-Cartesian coordination k-space trajectory will minimize the influence of noise and provide good images.

Global Minimum-Jerk Trajectory Planning of Space Manipulator

  • Huang Panfeng;Xu Yangsheng;Liang Bin
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.405-413
    • /
    • 2006
  • A novel approach based on genetic algorithms (GA) is developed to find a global minimum-jerk trajectory of a space robotic manipulator in joint space. The jerk, the third derivative of position of desired joint trajectory, adversely affects the efficiency of the control algorithms and stabilization of whole space robot system and therefore should be minimized. On the other hand, the importance of minimizing the jerk is to reduce the vibrations of manipulator. In this formulation, a global genetic-approach determines the trajectory by minimizing the maximum jerk in joint space. The planning procedure is performed with respect to all constraints, such as joint angle constraints, joint velocity constraints, joint angular acceleration and torque constraints, and so on. We use an genetic algorithm to search the optimal joint inter-knot parameters in order to realize the minimum jerk. These joint inter-knot parameters mainly include joint angle and joint angular velocities. The simulation result shows that GA-based minimum-jerk trajectory planning method has satisfactory performance and real significance in engineering.

Joint Space Trajectory Planning Considering Physical Limits for Two-wheeled Mobile Robots (물리적 제한을 고려한 두 바퀴 로봇의 관절 공간 궤적 생성 방법)

  • Yang, Gil-Jin;Choi, Byoung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.540-546
    • /
    • 2013
  • This paper presents a trajectory planning algorithm for TMR (Two-wheeled Mobile Robots). The trajectory is developed in joint space and considers the physical limits of a TMR. First, we present a process for generating a smooth curve through a Bezier curve. The trajectory for the center of the TMR following the Bezier curve is developed through a convolution operator taking into consideration its physical limits. The trajectory along the Bezier curve is regenerated using time-dependent parameters which correspond to the distance driven by the velocity of the center of the TMR in a sampling time. The velocity commands in the Cartesian space are converted to actuator commands for two wheels. In case that the actuator commands exceed the maximum velocity, the trajectory is redeveloped with compensated center velocity. We also suggest a smooth trajectory planning algorithm in joint space for the two segmented paths. Finally, the effectiveness of the algorithm is shown through numerical examples and application to a simulator.

Trajectory Planning of Industrial Robot using Spline Method in Task Space (직교좌표공간에서의 스플라인을 이용한 산업용 로봇의 궤적 생성 방법)

  • Chung, Seong Youb;Hwang, Myun Joong
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.2
    • /
    • pp.9-13
    • /
    • 2016
  • Robot usually requires spline motion to move through multiple knots. In this paper, catmull-rom spline method is applied to the trajectory planning of industrial robot in task space. Centripetal catmull-rom is selected to avoid self-intersection and slow motion which can be occurred in uniform and chordal spline. The method to set two control points are proposed to satisfy velocity conditions of initial and final knots. To optimize robot motion, time scaling method is presented to minimize margin between real robot value and maximum value in velocity and acceleration. The simulation results show that the proposed methods are applied to trajectory planning and robot can follow the planned trajectory while robot motion does not exceed maximum value of velocity and acceleration.

Trajectory Optimization for a Supersonic Air-Breathing Missile System Using Pseudo-Spectral Method

  • Park, Jung-Woo;Tahk, Min-Jea;Sung, Hong-Gye
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.112-121
    • /
    • 2009
  • This paper deals with supersonic air-breathing missile system. A supersonic air-breathing missile system has very complicated and incoherent thrust characteristics with respect to outer and inner environment during operation. For this reason, the missile system has many maneuver constraints and is allowed to operate within narrow flight envelope. In this paper, trajectory optimization of the missile is accomplished. The trajectory optimization problem is formulated as a discrete parameter optimization problem. For this formulation, Legendre Pseudo-Spectral method is introduced. This method is based on calculating the state and control variables on Legendre-Gauss-Lobatto (LGL) points. This approach helps to find approximated derivative and integration quantities simply. It is shown that, for this trajectory optimization, trend analysis is performed from thrust characteristics on various conditions so that the trajectory optimization is accomplished with fine initial guess with these results.

OPTIMAL FORMATION TRAJECTORY-PLANNING USING PARAMETER OPTIMIZATION TECHNIQUE

  • Lim, Hyung-Chul;Bang, Hyo-Choong;Park, Kwan-Dong;Lee, Woo-Kyoung
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.3
    • /
    • pp.209-220
    • /
    • 2004
  • Some methods have been presented to get optimal formation trajectories in the step of configuration or reconfiguration, which subject to constraints of collision avoidance and final configuration. In this study, a method for optimal formation trajectory-planning is introduced in view of fuel/time minimization using parameter optimization technique which has not been applied to optimal trajectory-planning for satellite formation flying. New constraints of nonlinear equality are derived for final configuration and constraints of nonlinear inequality are used for collision avoidance. The final configuration constraints are that three or more satellites should be placed in an equilateral polygon of the circular horizontal plane orbit. Several examples are given to get optimal trajectories based on the parameter optimization problem which subjects to constraints of collision avoidance and final configuration. They show that the introduced method for trajectory-planning is well suited to trajectory design problems of formation flying missions.

A Study on Straight Line Trajectoties of Robot Mainpulator in Cartesian Space (직각좌표 공간에서 로봇 매니퓰레이터의 직선 궤적계획에 관한 연구)

  • Han, Sang-Wan;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.763-766
    • /
    • 1991
  • The moving of each axis in the robot manipulator can be represented with the motion of cartesian space. This paper shows the robot manipulator of the straight line trajectory planning algorithms in the cartesian space. The relation formulas between cartesian space and joint space are induced to accomplish a desired trajectory in the cartesian space and the velocity vector of sampling time in the cartesian space is transformed into the velocity vector of joint by the interpolation method. The error of trajectory in moving is removed by obtaining the real position for the present joint position and the desired distance is made by comparing the real position and the next position. Through the simple tests for suggested algorithms are confirmed the validity of algorithms.

  • PDF

REAL-TIME TRAJECTORY ESTIMATION OF SPACE LAUNCH VEHICLE USING EXTENDED KALMAN FILTER AND UNSCENTED KALMAN FILTER (확장칼만필터와 UNSCENTED 칼만필터를 이용한 우주발사체의 실시간 궤적추정)

  • Baek, Jeong-Ho;Park, Sang-Young;Park, Eun-Seo;Choi, Kyu-Hong;Lim, Hyung-Chul;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.501-512
    • /
    • 2005
  • This research supposed when a fictitious KSIV-I space launch vehicle launches from NARO space center. This compared and analyzed the results from real-time trajectory estimation using the Extended Kalman Filter and the Unscented Kalman Filter. A virtual trajectory and observation data are generated for the fictitious KSLV-I and three measurement radars. The performances of both Otters are compared for several simulations with small initial errors, large initial errors, 20Hz and 10Hz data rate. The results show that the Unscented Kalman Filter yields faster convergence and more accurate than the Extended Kalman Filter for the cases with larger initial error and slower data rate conditions.

Model-based Gradient Compensation in Spiral Imaging (나선주사영상에서 모델 기반 경사자계 보상)

  • Cho, S.H.;Kim, P.K.;Lim, J.W.;Ahn, C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.15-21
    • /
    • 2009
  • Purpose : A method to estimate a real k-space trajectory based on a circuit model of the gradient system is proposed for spiral imaging. The estimated k-space trajectory instead of the ideal trajectory is used in the reconstruction to improve the image quality in the spiral imaging. Materials and Methods : Since the gradient system has self resistance, capacitance, and inductance, as well as the mutual inductance between the magnet and the gradient coils, the generated gradient fields have delays and transient responses compared to the input waveform to the gradient system. The real gradient fields and their trajectory in k-space play an important role in the reconstruction. In this paper, the gradient system is modeled with R-L-C circuits, and real gradient fields are estimated from the input to the model. An experimental method to determine the model parameters (R, L, C values) is also suggested from the quality of the reconstructed image. Results : The gradient fields are estimated from the circuit model of the gradient system at 1.5 Tesla MRI system. The spiral trajectory obtained by the integration of the estimated gradient fields is used for the reconstruction. From experiments, the reconstructed images using the estimated trajectory show improved uniformity, reduced overshoots near the edges, and enhanced resolutions compared to those using the ideal trajectory without model. Conclusion : The gradient system was successfully modeled by the R-L-C circuits. Much improved reconstruction was achieved in the spiral imaging using the trajectory estimated by the proposed model.

  • PDF

A Minimum time trajectory planning for robotic manipulators with input torque constraint (입력 토오크 constraint를 가진 로보트 매니플레이터에 대한 최소 시간 궤적 계획)

  • Hong, In-Keun;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.445-449
    • /
    • 1989
  • Achievement of a straight line motion in the Cartesian space has a matter of great importance. Minimization of task execution time with linear interpolation in the joint space, accomplishing of a approximation of straight line motion in the Cartesian coordinate is considered as the prespecified task. Such determination yields minimum time joint-trajectory subject to input torque constraints. The applications of these results for joint-trajectory planning of a two-link manipulator with revolute joints are demonstrated by computer simulations.

  • PDF