• Title/Summary/Keyword: k-nearest neighbor method

Search Result 316, Processing Time 0.023 seconds

Performance of Indoor Positioning using Visible Light Communication System (가시광 통신을 이용한 실내 사용자 단말 탐지 시스템)

  • Park, Young-Sik;Hwang, Yu-Min;Song, Yu-Chan;Kim, Jin-Young
    • Journal of Digital Contents Society
    • /
    • v.15 no.1
    • /
    • pp.129-136
    • /
    • 2014
  • Wi-Fi fingerprinting system is a very popular positioning method used in indoor spaces. The system depends on Wi-Fi Received Signal Strength (RSS) from Access Points (APs). However, the Wi-Fi RSS is changeable by multipath fading effect and interference due to walls, obstacles and people. Therefore, the Wi-Fi fingerprinting system produces low position accuracy. Also, Wi-Fi signals pass through walls. For this reason, the existing system cannot distinguish users' floor. To solve these problems, this paper proposes a LED fingerprinting system for accurate indoor positioning. The proposed system uses a received optical power from LEDs and LED-Identification (LED-ID) instead of the Wi-Fi RSS. In training phase, we record LED fingerprints in database at each place. In serving phase, we adopt a K-Nearest Neighbor (K-NN) algorithm for comparing existing data and new received data of users. We show that our technique performs in terms of CDF by computer simulation results. From simulation results, the proposed system shows that a positioning accuracy is improved by 8.6 % on average.

Estimation of Aboveground Forest Biomass Carbon Stock by Satellite Remote Sensing - A Comparison between k-Nearest Neighbor and Regression Tree Analysis - (위성영상을 활용한 지상부 산림바이오매스 탄소량 추정 - k-Nearest Neighbor 및 Regression Tree Analysis 방법의 비교 분석 -)

  • Jung, Jaehoon;Nguyen, Hieu Cong;Heo, Joon;Kim, Kyoungmin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.651-664
    • /
    • 2014
  • Recently, the demands of accurate forest carbon stock estimation and mapping are increasing in Korea. This study investigates the feasibility of two methods, k-Nearest Neighbor (kNN) and Regression Tree Analysis (RTA), for carbon stock estimation of pilot areas, Gongju and Sejong cities. The 3rd and 5th ~ 6th NFI data were collected together with Landsat TM acquired in 1992, 2010 and Aster in 2009. Additionally, various vegetation indices and tasseled cap transformation were created for better estimation. Comparison between two methods was conducted by evaluating carbon statistics and visualizing carbon distributions on the map. The comparisons indicated clear strengths and weaknesses of two methods: kNN method has produced more consistent estimates regardless of types of satellite images, but its carbon maps were somewhat smooth to represent the dense carbon areas, particularly for Aster 2009 case. Meanwhile, RTA method has produced better performance on mean bias results and representation of dense carbon areas, but they were more subject to types of satellite images, representing high variability in spatial patterns of carbon maps. Finally, in order to identify the increases in carbon stock of study area, we created the difference maps by subtracting the 1992 carbon map from the 2009 and 2010 carbon maps. Consequently, it was found that the total carbon stock in Gongju and Sejong cities was drastically increased during that period.

Identification of Plastic Wastes by Using Fuzzy Radial Basis Function Neural Networks Classifier with Conditional Fuzzy C-Means Clustering

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1872-1879
    • /
    • 2016
  • The techniques to recycle and reuse plastics attract public attention. These public attraction and needs result in improving the recycling technique. However, the identification technique for black plastic wastes still have big problem that the spectrum extracted from near infrared radiation spectroscopy is not clear and is contaminated by noise. To overcome this problem, we apply Raman spectroscopy to extract a clear spectrum of plastic material. In addition, to improve the classification ability of fuzzy Radial Basis Function Neural Networks, we apply supervised learning based clustering method instead of unsupervised clustering method. The conditional fuzzy C-Means clustering method, which is a kind of supervised learning based clustering algorithms, is used to determine the location of radial basis functions. The conditional fuzzy C-Means clustering analyzes the data distribution over input space under the supervision of auxiliary information. The auxiliary information is defined by using k Nearest Neighbor approach.

Prototype based Classification by Generating Multidimensional Spheres per Class Area (클래스 영역의 다차원 구 생성에 의한 프로토타입 기반 분류)

  • Shim, Seyong;Hwang, Doosung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.2
    • /
    • pp.21-28
    • /
    • 2015
  • In this paper, we propose a prototype-based classification learning by using the nearest-neighbor rule. The nearest-neighbor is applied to segment the class area of all the training data into spheres within which the data exist from the same class. Prototypes are the center of spheres and their radii are computed by the mid-point of the two distances to the farthest same class point and the nearest another class point. And we transform the prototype selection problem into a set covering problem in order to determine the smallest set of prototypes that include all the training data. The proposed prototype selection method is based on a greedy algorithm that is applicable to the training data per class. The complexity of the proposed method is not complicated and the possibility of its parallel implementation is high. The prototype-based classification learning takes up the set of prototypes and predicts the class of test data by the nearest neighbor rule. In experiments, the generalization performance of our prototype classifier is superior to those of the nearest neighbor, Bayes classifier, and another prototype classifier.

Design of Free Viewpoint TV System with MS Kinects (MS Kinect 를 이용한 Free Viewpoint TV System 설계)

  • Lee, Jun Hyeop;Yang, Yun Mo;Oh, Byung Tae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.122-124
    • /
    • 2015
  • This paper provides the design and implementation of Free Viewpoint TV System with multiple Microsoft Kinects. It generates a virtual view between two views by manipulating texture and depth image captured by Kinects in real-time. In order to avoid this, we propose the hole-filling scheme using Nearest neighbor and inpainting. As a result, holes generated by interference are filled with new depth values calculated by their neighbors. However, the depth values are not accurate, but are similar with their neighbors. And depending on the frequency of running a Nearest Neighbor method, we can see that edge's border would be shifted inner or outer of the object.

  • PDF

Dynamic threshold location algorithm based on fingerprinting method

  • Ding, Xuxing;Wang, Bingbing;Wang, Zaijian
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.531-536
    • /
    • 2018
  • The weighted K-nearest neighbor (WKNN) algorithm is used to reduce positioning accuracy, as it uses a fixed number of neighbors to estimate the position. In this paper, we propose a dynamic threshold location algorithm (DH-KNN) to improve positioning accuracy. The proposed algorithm is designed based on a dynamic threshold to determine the number of neighbors and filter out singular reference points (RPs). We compare its performance with the WKNN and Enhanced K-Nearest Neighbor (EKNN) algorithms in test spaces of networks with dimensions of $20m{\times}20m$, $30m{\times}30m$, $40m{\times}40m$ and $50m{\times}50m$. Simulation results show that the maximum position accuracy of DH-KNN improves by 31.1%, and its maximum position error decreases by 23.5%. The results demonstrate that our proposed method achieves better performance than other well-known algorithms.

Nearest Neighbor Based Prototype Classification Preserving Class Regions

  • Hwang, Doosung;Kim, Daewon
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1345-1357
    • /
    • 2017
  • A prototype selection method chooses a small set of training points from a whole set of class data. As the data size increases, the selected prototypes play a significant role in covering class regions and learning a discriminate rule. This paper discusses the methods for selecting prototypes in a classification framework. We formulate a prototype selection problem into a set covering optimization problem in which the sets are composed with distance metric and predefined classes. The formulation of our problem makes us draw attention only to prototypes per class, not considering the other class points. A training point becomes a prototype by checking the number of neighbors and whether it is preselected. In this setting, we propose a greedy algorithm which chooses the most relevant points for preserving the class dominant regions. The proposed method is simple to implement, does not have parameters to adapt, and achieves better or comparable results on both artificial and real-world problems.

Image Feature Point Selection Method Using Nearest Neighbor Distance Ratio Matching (최인접 거리 비율 정합을 이용한 영상 특징점 선택 방법)

  • Lee, Jun-Woo;Jeong, Jea-Hyup;Kang, Jong-Wook;Na, Sang-Il;Jeong, Dong-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.124-130
    • /
    • 2012
  • In this paper, we propose a feature point selection method for MPEG CDVS CE-7 which is processing on International Standard task. Among a large number of extracted feature points, more important feature points which is used in image matching should be selected for the compactness of image descriptor. The proposed method is that remove the feature point in the extraction phase which is filtered by nearest neighbor distance ratio matching in the matching phase. We can avoid the waste of the feature point and employ additional feature points by the proposed method. The experimental results show that our proposed method can obtain true positive rate improvement about 2.3% in pair-wise matching test compared with Test Model.

A Fast Fractal Image Compression Using The Normalized Variance (정규화된 분산을 이용한 프랙탈 압축방법)

  • Kim, Jong-Koo;Hamn, Do-Yong;Wee, Young-Cheul;Kimn, Ha-Jine
    • The KIPS Transactions:PartA
    • /
    • v.8A no.4
    • /
    • pp.499-502
    • /
    • 2001
  • Fractal image coding suffers from the long search time of domain pool although it provides many properties including the high compression ratio. We find that the normalized variance of a block is independent of contrast, brightness. Using this observation, we introduce a self similar block searching method employing the d-dimensional nearest neighbor searching. This method takes Ο(log/N) time for searching the self similar domain blocks for each range block where N is the number of domain blocks. PSNR (Peak Signal Noise Ratio) of this method is similar to that of the full search method that requires Ο(N) time for each range block. Moreover, the image quality of this method is independent of the number of edges in the image.

  • PDF

Guitar Tab Digit Recognition and Play using Prototype based Classification

  • Baek, Byung-Hyun;Lee, Hyun-Jong;Hwang, Doosung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.9
    • /
    • pp.19-25
    • /
    • 2016
  • This paper is to recognize and play tab chords from guitar musical sheets. The musical chord area of an input image is segmented by changing the image in saturation and applying the Grabcut algorithm. Based on a template matching, our approach detects tab starting sections on a segmented musical area. The virtual block method is introduced to search blanks over chord lines and extract tab fret segments, which doesn't cause the computation loss to remove tab lines. In the experimental tests, the prototype based classification outperforms Bayesian method and the nearest neighbor rule with the whole set of training data and its performance is similar to that of the support vector machine. The experimental result shows that the prediction rate is about 99.0% and the number of selected prototypes is below 3.0%.