Browse > Article
http://dx.doi.org/10.7780/kjrs.2014.30.5.10

Estimation of Aboveground Forest Biomass Carbon Stock by Satellite Remote Sensing - A Comparison between k-Nearest Neighbor and Regression Tree Analysis -  

Jung, Jaehoon (School of Civil and Environmental Engineering, Yonsei University)
Nguyen, Hieu Cong (School of Civil and Environmental Engineering, Yonsei University)
Heo, Joon (School of Civil and Environmental Engineering, Yonsei University)
Kim, Kyoungmin (Center for Forest & Climate Change, Korea Forest Research Institute)
Im, Jungho (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
Publication Information
Korean Journal of Remote Sensing / v.30, no.5, 2014 , pp. 651-664 More about this Journal
Abstract
Recently, the demands of accurate forest carbon stock estimation and mapping are increasing in Korea. This study investigates the feasibility of two methods, k-Nearest Neighbor (kNN) and Regression Tree Analysis (RTA), for carbon stock estimation of pilot areas, Gongju and Sejong cities. The 3rd and 5th ~ 6th NFI data were collected together with Landsat TM acquired in 1992, 2010 and Aster in 2009. Additionally, various vegetation indices and tasseled cap transformation were created for better estimation. Comparison between two methods was conducted by evaluating carbon statistics and visualizing carbon distributions on the map. The comparisons indicated clear strengths and weaknesses of two methods: kNN method has produced more consistent estimates regardless of types of satellite images, but its carbon maps were somewhat smooth to represent the dense carbon areas, particularly for Aster 2009 case. Meanwhile, RTA method has produced better performance on mean bias results and representation of dense carbon areas, but they were more subject to types of satellite images, representing high variability in spatial patterns of carbon maps. Finally, in order to identify the increases in carbon stock of study area, we created the difference maps by subtracting the 1992 carbon map from the 2009 and 2010 carbon maps. Consequently, it was found that the total carbon stock in Gongju and Sejong cities was drastically increased during that period.
Keywords
k-Nearest Neighbor; Regression Tree Analysis; National Forest Inventory; Landsat TM; Aster; Carbon stock estimation;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Brockhaus, J.A. and S. Khorram, 1992. A comparison of SPOT and Landsat-TM data for use in conducting inventories of forest resources, International Journal of Remote Sensing, 13(16): 3035-3043.   DOI   ScienceOn
2 Chander, G. and B. Markham, 2003. Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges, IEEE Transactions on Geoscience and Remote Sensing, 41(11): 2674-2677.   DOI   ScienceOn
3 Coomes, O.T., F. Grimard, C. Potvin and P. Sima, 2008. The fate of the tropical forest: Carbon or cattle?, Ecological Economics, 65(2): 207-212.   DOI
4 Cho, K., J. Heo, J. Jung, C. Kim and K. Kim, 2011. Review and Comparative Analysis of Forest Biomass Estimation using Remotely Sensed Data: from Five Different Perspectives. Korean Society for Geospatial Information System, 19(1): 87-96 (in Korean with English abstract).   과학기술학회마을
5 Chung, S.Y., J.S. Yim, H.K. Cho, J.H. Jeong, S.H. Kim and M.Y. Shin, 2009. Estimation of Forest Biomass for Muju County using Biomass Conversion Table and Remote Sensing Data, Journal of Korean Forest Society, 98(4): 409-416 (in Korean with English abstract).   과학기술학회마을
6 Colby, J.D., 1991. Topographic normalization in rugged terrain, Photogrammetric Engineering and Remote Sensing, 57(5): 531-537.
7 Crist, E.P. and R.J. Kauth, 1986. The Tasseled Cap De-Mystified, Photogrammetric Engineering and Remote Sensing, 52: 81-86.
8 Fazakas, Z., M. Nilsson and H. Olsson, 1999. Regional forest biomass and wood volume estimation using satellite data and ancillary data, Agricultural and Forest Meteorology, 98: 417-425.
9 Franco-Lopez, H., A.R. Ek and M.E. Bauer, 2001. Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method, Remote Sensing of Environment, 77(3): 251-274.   DOI   ScienceOn
10 Fuchs, H., P. Magdon, C. Kleinn and H. Flessa, 2009. Estimating aboveground carbon in a catchment of the Siberian forest tundra: Combining satellite imagery and field inventory, Remote Sensing of Environment, 113(3): 518-531.   DOI   ScienceOn
11 Gao, B.-c., 1996. NDWI?A normalized difference water index for remote sensing of vegetation liquid water from space, Remote Sensing of Environment, 58(3): 257-266.   DOI   ScienceOn
12 Gemmell, F.M., 1995. Effects of forest cover, terrain, and scale on timber volume estimation with Thematic Mapper data in a rocky mountain site, Remote Sensing of Environment, 51(2): 291-305.   DOI   ScienceOn
13 Heo, J., J.H. Kim, J.S. Park and H.G. Sohn, 2006a. Timber age verification using historical satellite image analysis, Forest ecology and management, 236(2): 315-323.   DOI
14 Heo, J., J.S. Park, Y.S. Song, S.K. Lee and H.G. Sohn, 2008. An integrated methodology for estimation of forest fire-loss using geospatial information, Environmental monitoring and assessment, 144(1): 285-299.   DOI
15 Gjertsen, A.K., 2007. Accuracy of forest mapping based on Landsat TM data and a kNN-based method, Remote Sensing of Environment, 110(4): 420-430.   DOI   ScienceOn
16 Gonzalez, P., G.P. Asner, J.J. Battles, M.A. Lefsky, K.M. Waring and M. Palace, 2010. Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in California, Remote Sensing of Environment, 114(7): 1561-1575.   DOI
17 Goodenough, D.G., A. Bhogal, A. Dyk, M. Apps, R. Hall, P. Tickle, H. Chen, K. Butler and M. Gim. 2000. Determination of above ground carbon in Canada's forests-a multi-source approach, Proc. of 2000 Geoscience and Remote Sensing Symposium, Honolulu Hawaii, USA. Jul. 24-28, pp. 949-953.
18 Holopainen, M., R. Haapanen, M. Karjalainen, M. Vastaranta, J. Hyyppa, X. Yu, S. Tuominen and H. Hyyppa, 2010. Comparing accuracy of airborne laser scanning and TerraSAR-X radar images in the estimation of plot-level forest variables, Remote Sensing, 2(2): 432-445.   DOI
19 Homer, C., J. Dewitz, J. Fry, M. Coan, N. Hossain, C. Larson, N. Herold, A. McKerrow, J.N. VanDriel and J. Wickham, 2007. Completion of the 2001 National Land Cover Database for the Counterminous United States, Photogrammetric Engineering and Remote Sensing, 73(4): 337.
20 Huang, F., 2006. Child development production functions. Available at SSRN: http://ssrn.com/abstract=889005 or http://dx.doi.org/10.2139/ssrn.889005.
21 Huete, A., K. Didan, T. Miura, E.P. Rodriguez, X. Gao and L.G. Ferreira, 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sensing of Environment, 83: 195-213.   DOI   ScienceOn
22 Hyyppa, J., H. Hyyppa, M. Inkinen, M. Engdahl, S. Linko and Y.H. Zhu, 2000. Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes, Forest Ecology and Management, 128(1): 109-120.   DOI
23 Jung, J.H., J. Heo, S.H. Yoo, K.M. Kim and J.B. Lee, 2010. Estimation of Aboveground Biomass Carbon Stock in Danyang Area using kNN Algorithm and Landsat TM Seasonal Satellite Images, Journal of the Korean Society for GeoSpatial Information System, 18(4): 119-129 (in Korean with English abstract).   과학기술학회마을
24 Huete, A.R., 1988. A soil-adjusted vegetation index, SAVI, Remote Sensing of Environment, 25(3): 295-309.   DOI   ScienceOn
25 Huete, A.R., H. Liu, K. Batchily and W.J.D. Leeuwen, 1997. A comparison of vegetation indices over a global set of TM images for EOS-MODIS, Remote Sensing of Environment, 59(3): 440-451.   DOI
26 Jung, J.H., S.P. Kim, S.C. Hong, K.M. Kim, E.S. Kim, J.H. Im and J. Heo, 2013. Effects of national forest inventory plot location error on forest carbon stock estimation using k-nearest neighbor algorithm, ISPRS Journal of Photogrammetry and Remote Sensing, 81: 82-92.   DOI
27 Katila, M. and E. Tomppo, 2001. Selecting estimation parameters for the Finnish multisource National Forest Inventory, Remote Sensing of Environment, 76(1): 16-32.   DOI   ScienceOn
28 Kim, C., J. Heo, J.B. Lee, S. Han, J.H. Jung and S. Jayakumar, 2012. A synergetic approach to estimating timber age using integrated remotely sensed optical image and InSAR height data, International Journal of Remote Sensing, 33(1): 243-260.   DOI
29 Lu, D., 2006. The potential and challenge of remote sensing based biomass estimation, International Journal of Remote Sensing, 27(7): 1297-1328.   DOI   ScienceOn
30 Kim, K.M., 2012. Spatially explicit estimation and the uncertainty analysis of carbon stocks in pine forest using growth model and GIS: The case of Danyang area, Chungcheongbuk-do, doctoral dissertation, Seoul National University, Korea (in Korean with English abstract).
31 Kim, S., J.H. Heo, J. Heo and S. Kim, 2008. Impervious Surface Estimation of Jungnangcheon Basin using Satellite Remote Sensing and Classification and Regression Tree, Korean Society of Civil Engineers, 28(6D): 915-922 (in Korean with English abstract).   과학기술학회마을
32 Korea Forest Research Institute, 2009. The 5th national forest inventory surveying: field surveying guide book ver. 1.3 37. Korea Forest Research Institute (in Korean).
33 Labrecque, S., R. Fournier, J. Luther and D. Piercey, 2006. A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland, Forest Ecology and Management, 226(1): 129-144.   DOI   ScienceOn
34 Lu, D., P. Mausel, E. Brondı'zio and E. Moran, 2004. Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin, Forest Ecology and Management, 198(1-3): 149-167.   DOI
35 Luther, J., R. Fournier, D. Piercey, L. Guindon and R. Hall, 2006. Biomass mapping using forest type and structure derived from Landsat TM imagery, International journal of applied earth observation and geoinformation, 8(3): 173-187.   DOI
36 Major, D.J., F. Baret and G. Guyot, 1990. A ratio vegetation index adjusted for soil brightness, International Journal of Remote Sensing, 11: 727-740.   DOI
37 Qi, J., A. Chehbouni, A.R. Huete, Y.H. Kerr and S. Sorooshian, 1994. A modified soil adjusted vegetation index, Remote Sensing of Environment, 48(2): 119-126.   DOI   ScienceOn
38 McVey, G.R. and G.S. Gerald, 1968. Measuring the Color of Growing Turf with a Reflectance Spectrophotometer, Agronomy Journal, 60: 640-643.   DOI
39 Muukkonen, P., 2006. Forest inventory-based largescale forest biomass and carbon budget assessment: new enhanced methods and use of remote sensing for verification, doctoral dissertation, University of Helsinki, Finland.
40 Myeong, S., D.J. Nowak and M.J. Duggin, 2006. A temporal analysis of urban forest carbon storage using remote sensing, Remote Sensing of Environment, 101(2): 277-282.   DOI   ScienceOn
41 Penman, J., M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, R. Pipatti, L. Buendia, K. Miwa, T. Ngara and K. Tanabe, 2003. Good practice guidance for land use, land-use change and forestry, IPCC National Greenhouse Gas Inventories Programme and Institute for Global Environmental Strategies, IGES), Kanagawa, Japan.
42 Pinty, B. and M. Verstraete, 1992. GEMI: A Non-Linear Index to Monitor Global Vegetation from Satellites, Vegetatio, 101: 15-20.   DOI
43 Prasad, A.M., L.R. Iverson and A. Liaw, 2006. Newer classification and regression tree techniques: bagging and random forests for ecological prediction, Ecosystems, 9(2): 181-199.   DOI   ScienceOn
44 Reese, H., M. Nilsson, T.G. Pahlen, O. Hagner, S. Joyce, U. Tingelof, M. Egberth and H. Olsson, 2003. Countrywide estimates of forest variables using satellite data and field data from the National Forest Inventory, AMBIO: A Journal of the Human Environment, 32(8): 542-548.   DOI
45 Ripple, W.J., S. Wang, D.L. Isaacson and D.P. Paine, 1991. A preliminary comparison of Landsat Thematic Mapper and SPOT-1 HTV multispectral data for estimating coniferous forest volume, International Journal of Remote Sensing, 12: 1971-1977.   DOI
46 Rondeaux, G., M. Steven and F. Baret, 1996. Optimization of soil-adjusted vegetation indices, Remote Sensing of Environment, 55(2): 95-107.   DOI   ScienceOn
47 Roujean, J.L. and F.M. Breon, 1995. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements, Remote Sensing of Environment, 51(3): 375-384.   DOI   ScienceOn
48 Tomppo, E. and M. Halme, 2004. Using coarse scale forest variables as ancillary information and weighting of variables in k-NN estimation: a genetic algorithm approach, Remote Sensing of Environment, 92(1): 1-20.   DOI   ScienceOn
49 Rouse, J.W., R.H. Haas, J.A. Schell and D.W. Deering. 1974. Monitoring vegetation systems in the Great Plains with ERTS, NASA special publication, USA.
50 Roy, P. and S.A. Ravan, 1996. Biomass estimation using satellite remote sensing data?an investigation on possible approaches for natural forest, Journal of Biosciences, 21(4): 535-561.   DOI   ScienceOn
51 Rulequest. 2012. Rulequest research data mining tools.
52 Santilli, M., P. Moutinho, S. Schwartzman, D. Nepstad, L. Curran and C. Nobre, 2005. Tropical deforestation and the Kyoto Protocol, Climatic Change, 71(3): 267-276.   DOI   ScienceOn
53 Tomppo, E., C. Goulding and M. Katila, 1999. Adapting Finnish Multi-Source Forest Inventory Techniques to the New Zealand Preharvest Inventory, Scandinavian Journal of Forest Research, 14: 182-192.   DOI
54 Tomppo, E., H. Olsson, G. St?hl, M. Nilsson, O. Hagner and M. Katila, 2008. Combining national forest inventory field plots and remote sensing data for forest databases, Remote Sensing of Environment, 112(5): 1982-1999.   DOI   ScienceOn
55 Tou, J.T. and R.C. Gonzalez, 1974. Pattern recognition principles.
56 Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring vegetation, Remote Sensing of Environment, 8(2): 127?150.   DOI   ScienceOn
57 Yoo, S.H., J. Heo, J.H. Jung, S.H. Han and K.M. Kim, 2011. Estimation of Aboveground Biomass Carbon Stock using Landsat TM and Ratio Images - kNN Algorithm and Regression Model Priority, Korea Society for Geospatial Information System, 19(2): 39-48 (in Korean with English abstract).
58 Yim, J.S., W.S. Han, J.H. Hwang, S.Y. Chung, H.K. Cho and M.Y. Shin, 2009. Estimation of Forest Biomass upon Satellite Data and National Forest Inventory Data, Korean Journal of Remote Sensing, 25(4): 311-320.   과학기술학회마을   DOI